

Environmental Impact Assessment

Report

ART DATACENTRES – ENNIS CAMPUS

Ennis, Co. Clare

Volume 3 – Appendices

Prepared by: AWN Consulting, June 2022 Prepared for: ART Data Centres Limited

LIST OF APPENDICES

APPENDIX 3.1	Clare County Council Planning Search
APPENDIX 3.2	Clare County Council Regional Planning Search
APPENDIX	Criteria For Rating The Magnitude And Significance Of Impacts At EIA Stage
5.1	National Roads Authority
APPENDIX 5.2	Soil And Groundwater Quality Results
APPENDIX 5.3	Hydrographs
APPENDIX	Dye Tracer Tests
5.4	
APPENDIX	Piling Drawings
5.5	
APPENDIX	Criteria For Rating The Magnitude And Significance Of Impacts At EIA Stage
6.1	National Roads Authority
APPENDIX	European/National Sites
7.1	
APPENDIX	NBDC Records/BCI Records
7.2	
APPENDIX	Flora Species List By Habitat
7.3	
APPENDIX	Building Inspection Results
7.4	
APPENDIX	Details Of Roost Emergence/Re-Entry Surveys At Buildings And Structures
7.5	5 , , 5
APPENDIX	Transect Survey Results
7.6	,
APPENDIX	Examples Of Valuing Important Ecological Features
7.7	
APPENDIX	Bat Survey Results And Analysis From 2018
7.8	
APPENDIX	Description Of The Aermod Model
8.1	
APPENDIX	Description Of The Aermet
8.2	
APPENDIX	Glossary Of Acoustic Terminology
9.1	
APPENDIX	Baseline Noise Monitoring Survey
9.2	
APPENDIX	Noise Modelling Details & Assumptions
9.3	
APPENDIX	Indicative Construction Noise & Vibration Management Plan
9.4	
	Noise Model Parameters
9.5	
Appendix 10.1	LVIA Secondary Viewpoints
ANNEX 10.1	Photomontage Views – Attached under separate cover.
APPENDIX	Legislation Protecting The Archaeological Resource
11.1	
APPENDIX	Legislation Protecting The Architectural Resource
11.2	

APPENDIX	Impact Assessment And The Cultural Heritage Resource
11.3	
APPENDIX	Mitigation Measures And The Cultural Heritage Resource
11.4	
APPENDIX	Classified Turning Count Survey Data
12.1	
APPENDIX	Automatic Traffic Count Data
12.2	
APPENDIX	Construction Period And Operation By Phase, Trip Generation By Month
12.3	
APPENDIX	Traffic Flows Diagrams
12.4	
APPENDIX	Traffic Flow Tables
12.5	
APPENDIX	Junction Model Outputs
12.6	
APPENDIX	Construction & Demolition Waste Management Plan
14.1	

CLARE COUNTY COUNCIL PLANNING SEARCH (Planning permissions still under review or granted post 21st of April 2016, and

within 2km of the proposed site)

Planning Reference No., Applicant & Location	Development description	Decision & Decision Date
20158 / PL03.309568 J.J. Fahy Roslevan, Ennis, Co Clare	To construct 22 no. houses, to include the following: (a) 3 no. two- bedroom detached bungalows; (b) 4 no. blocks to include a total of 8 no. three - bedroom semi-detached houses; (c) 3 no. blocks of 3 no. terrace type houses to include 2 no. three bedroom and 1 no. four-bedroom house in each terrace (9 no. houses in total) (d) 2 no. three-bedroom detached houses. Connect to public foul sewer. Surface water to discharge to stream. Connect to public water supply, connect to public services (telephone and electricity). PERMISSION is also required to access the development via development previously granted under Planning Ref. 99/232 Previous permission granted on this site under Planning Ref No. 06/161	At the time of writing, a decision had not yet been published.
21153 Cormac Finn & Declan Finn Doire Mor, Knockaderry, Ennis, Co Clare	For a residential development comprising 21 no. two storey houses including; 3 no. detached four bedroom units, 8 no. detached four bedroom units, 8 no. semi detached four bedroom units, 4 no. semi detached three bedroom units, 6 terraced three bedroom units, modifications to front gardens (only) of the existing houses nos. 11-14 Doire Mor together with vehicular and pedestrian access and al associated site works and modifications to the existing stormwater outfall, form Doire Mor, to enable the stormwater discharges be redirected to the existing public stormwater sewer on the Tulla Road,	Decision to grant by Clare County Council subject to conditions on 16th April 2021
2141 St Josephs Doora Barefield GAA Club Gurteen, Doora, Co Clare	To extend the existing Astro Turf playing pitches to include for an additional 40m x 25m Astro Turf pitch, metal posts and fencing to the perimeter of the new playing pitch, two additional lighting poles along with associated lights and all ancillary site works both above and below ground	Decision to grant by Clare County Council subject to conditions on 2nd March 2021
20172 Finn Homes Limited The Maples, Oakleigh Woods, Ennis, Co Clare	 For development comprising 16 no. Semi-detached residential units, vehicular and pedestrian access to the proposed development via the Maples housing estate, and all associated site development works on lands at The Maples, Oakleigh Woods, Ennis, Co Clare. The proposed development is divided in two separate sites: A) Western site comprises the following: 2 no. 3 bedroom semi-detached houses, 4 no. 2 bedroom semi-detached houses, Domestic connections to existing watermain, Domestic connections to existing foul and surface sewer extension: B) Eastern site comprises the following: 6 no. 3 bedroom semi-detached houses, 4 no. 4 bedroom semi-detached houses, 50m new vehicular road extension of the existing "The Maples" road with footpath lanes, Watermain extension, Foul and surface sewer extensions, Domestic connections to watermain, foul and surface sewer extensions. 	Decision to grant by Clare County Council subject to conditions on 20th January 2021
208006 Clare County Council Tulla Road, Roslevan, Ennis, Co Clare	Proposes to carry out the following development. The construction of a new housing estate development consisting of: a) 8 no. residential units comprising of: 5 No. 3-bedroom, two-storey semi- detached dwellings; 3 No. 2-bedroom single storey semi-detached dwellings; b) 17 ancillary car parking spaces within the development. c) The construction of vehicular and pedestrian access points to the site. d) Alterations to ground levels to accommodate the development. e) Varied boundary treatments and landscaping works. f) Surface water management will include hydrocarbon interceptor and soakaway. g) All ancillary site works. In accordance with the Habitats Directive, Appropriate Assessment Screening has been carried out on the project. An Environmental Impact Assessment (EIA) screening determination has been made	Decision to grant by Clare County Council subject to conditions on 12th October 2020

Planning Reference No., Applicant & Location	Development description	Decision & Decision Date
	and concludes that there is no real likelihood of significant effects on the environment arising from proposed development.	
20190 Datcha Construction Ltd Roslevan, Tulla Road, Ennis , Co Clare	For a residential development comprising 25 no. residential units (1 no. detached house, 2 no. 4 bedroom semi-detached houses, 6 no. 3 bedroom semi-detached houses, 6 no. 2 bedroom semi-detached houses, 2 no. blocks comprising a ground floor two bedroom apartment with a first floor one bedroom apartment over a semi- detached house and 1 no. block comprising a ground floor two bedroom apartment with a first floor one bedroom apartment over and two terrace houses), accessed via the Cluain Ros Leamhan development and all ancillary site development works. Ancillary site development works include a new connection to the public water main, foul and surface water drainage, access roads, footpaths, vehicle parking, landscaping, boundary treatments and site development works above and below ground	Decision to grant by Clare County Council subject to conditions on 30th June 2020
19961 Commissioners of Public Works on behalf of Dept. of Education & Skills Scoil Náisiúnta Cnoc an Ein, (Knockannean National School), Knockanean, Ennis, Co Clare V95FW42	The development will consist of the demolition of existing boundary walls, demolition of existing single storey six classroom school building of 685sq.m demolition of existing open shed of 25sq.m and demolition of prefabricated classroom building of 207 sq.m. The existing 4no. Classroom block constructed in 2011 with a gross floor area of 370sq.m will be retained and integrated into the new school. The new development consists of new two storey primary school building with a gross floor area of 1720sq.m. New accommodation consists of 8no. new Classrooms, a General Purpose Room and ancillary accommodation. In addition, site works include the replacement of the existing gated entrance with 2no. new gated vehicular and 2 no. new separate pedestrian entrance off the Knockanean Road boundary, serving 24 no. on site car parking spaces and associated set down areas, pedestrian pathways, together with 2 ball courts, play areas, a bin store, a bicycle shelter, gas tank enclosure, 3no. flagpoles, connection to existing foul drainage treatment system, separate surface water drainage, signage, landscaping and all associated site works on an overall site area oof 1.34 hectares. The building will be set back 63.285m from the Knockanean Road	Decision to Grant by Clare County Council subject to conditions on 23rd June 2020

Planning Reference No., Applicant & Location	Development description	Decision & Decision Date
19196 / PL03.306960 Datcha Construction Ltd Roslevan, Tulla Road, Ennis, Co. Clare	Development comprising 68 no. residential units, (1 no. detached house 18 no. semi-detached houses 41 no. terrace houses, 1 no apartment block (2 storey apartment block comprised of 8 no. 2 bedroom apartments), accessed via Cluain Ros Leamhan development and all ancillary site development works on lands at Roslevan, Tulla Road, Ennis, Co Clare. Ancillary site development works include a new connection to the public water main, foul and surface water drainage, access roads, footpath, vehicle parking landscaping, boundary treatments and site development above and below ground.	Decision to grant by ABP subject to revised conditions on 26th November 2020.
1962 Cignal Infrastructure Ltd Roslevan Tld, Ennis, Co. Clare	To construct an 18 metre high multi-user monopole carrying telecommunications equipment, together with associated equipment and cabinets enclosed within a 2.4m palisade fence compound at Avenue United Football Club	Decision to grant by Clare County Council subject to conditions on 17th September 2019
19277 Tony Sheedy Knockasibbole, Doora, Co. Clare	To construct a new slatted unit and underground slurry storage tank and all associated site works	Decision to grant by Clare County Council subject to conditions on 31st May 2019

Planning Reference No., Applicant & Location	Development description	Decision & Decision Date
19244 Drumquin Construction Ltd Tulla Road, Roslevan, Ennis, Co Clare	To 1) RETAIN development consisting of (a) foundations for dwellings on sites 1,2,13,14,15,16,17,18,23,24,25 & 26. (b) Substructure works on sites 1,2,23,24,25 & 26 ; 2)Permission for development which will consist of the construction of 27 no dwelling houses as follows (a) 2 no. detached 2 storey dwelling houses with additional attic accommodation (b) 18 no. semi detached 2 storey dwelling houses (c) 4 semi detached no 2 storey dwelling houses with additional attic accommodation (d) 3 no detached bungalow (e) Ancillary site works and connection to services previously granted under P16-298.	Decision to grant by Clare County Council subject to conditions on 24th May 2019
18726 Cup Print Block F, Ballymaley Business Park, Gort Road, Ennis, Co. Clare	For development which will consist of the completion of a partially constructed light industrial/warehouse building granted under planning ref: 07-497 including all ancillary site works.	Decision to grant by Clare County Council subject to conditions on 30th January 2019
18137 Datcha Construction Ltd Roslevan, Tulla Road, Ennis, Co. Clare	To construct 25 no. dwelling houses consisting of the following: 3 no. Terraced Houses Type A, 8 no. Terraced Houses Type B, 6 no. Terraced Houses Type C, 8 no. Terraced Houses Type D. Connect to public water supply, connect to foul and surface water sewers and carry out all ancillary site works. Provide temporary road access to the vacant site within the " Cluain Ros Leamhan" development. Previous Planning permission ref. no. P04-200 refers.	Decision to grant by Clare County Council subject to conditions on 14th December 2018
18550 Cup Print Unit 2 & 3 Block B, Ballymaley Business Park, Gort Rd , Ennis	For development which will consist of alterations and an extension to an existing light industrial/warehouse building including all ancillary site works	Decision to grant by Clare County Council subject to conditions on 29th September 2018
18429 Michael Cullinan and Ciara O'Neill Knockaskibbole, Doora, Co. Clare	For development which will consist of the construction of a dwelling house, garage, a proprietary wastewater treatment system and ancillary site works	Decision to grant by Clare County Council subject to conditions on 25st September 2018
17960 James Carolan Knockanean, Tulla Road, Ennis, Co. Clare	For development which will consist of 9 No. two storey dwelling houses (which includes 4 No. with additional attic accommodation) ancillary site works and connection to public services	Decision to grant by Clare County Council subject to conditions on 12th September 2018
18285 Aine Clune	To construct a dwelling house and garage with effluent treatment system, new entrance from public road and with all associated site works.	Decision to grant by Clare County Council subject to conditions on 16th August 2018

Planning Reference No., Applicant & Location	Development description	Decision & Decision Date
Knockaskibbole, Doora, Co Clare		
188003		
Clare County Council Newpark Road, Roslevan, Ennis, Co. Clare	For a proposed development which will consist of: 8 No. dwelling houses with access road, public lighting and associated ancillary site development works	Decision to grant by Clare County Council subject to conditions on 14th May 2018
17400		Desision to smoot bu
Gildoc Ltd	To construct 14 no. dwelling houses consisting of 2 no. two-storey detached dwelling houses and 12 no. semi-detached dwelling houses including ancillary site works and connections to public	Decision to grant by Clare County Council subject to conditions on
Roslevan, Tulla Road, Ennis , Co Clare	services	28th September 2017
17541		
Gort Leamhán Residents Committee	To construct a temporary 1.2m high 30m long " bow top railing panel" type fence for a period of ten years	Decision to grant by Clare County Council subject to conditions on
Gort Leamhán, Roslevan, Ennis, Co. Clare		31st August 2017
17326 Cup Print Unit 2 & 3 Block B, Ballymaley Business Park, Gort Rd , Ennis	To renovate and extend existing light industrial/warehouse Units 2 and 3, Block B and to RETAIN existing compressor room as built, and all associated site works	Decision to grant by Clare County Council subject to conditions on 26th July 2017
17330 Spancilhill Fair & Show Association Muckinish, Spancilhill, Ennis, Co. Clare	To construct amenity area at Spancilhill Cross	Decision to grant by Clare County Council subject to conditions on 23rd July 2017
16298 Drumquin Construction (Barefield) Tulla Road, Roslevan, Ennis, Co. Clare	For residential development for the re-design and to amend a current planning permission as granted under Planning Ref. Numbers P12-21041 and P06-21046. The development will consist of the following a) omission of 18 no. apartments, b) omission of 4 no. semi detached houses 24-27 inclusive, c) inclusion of 2 no detached houses, d) inclusion of 4 no 3 bedroom terraced houses and 2 no semi detached houses in lieu of 18 no apartments, e) minor changes including changes to elevations of 8 no dwellings to that previously indicated in this location of the development, f) provision of entrance roadway, connection to public services including ancillary and associated site works, f) phasing of development (total of 16 no dwellings for this applications)	Decision to grant by Clare County Council subject to conditions on 23rd December 2016

Planning Reference No., Applicant & Location	Development description	Decision & Decision Date
16428 Joe and Eoin Hennessey Cappamore, Barefield, Co. Clare	To construct a slatted unit with underground slurry storage tanks for housing livestock on the farm	Decision to grant by Clare County Council subject to conditions on 19th July 2016
168003 Clare County Council Ballybeg, Clonroadmore,, Lifford, Dulick, Ballymaley, Ballycorey, Cloghleagh, Clonroad Beg, Co. Clare	For the following proposed development: Ennis - R458 Active Travel Town (Clareabbey to Ballymaley) Works to encourage walking and cycling are proposed on parts of the R458 at 11 junctions on the R458, Club Bridge junction and Kelly's Corner as follows: 1. Improve the provision of cyclist infrastructure at junctions ie. traffic signals and roundabouts. 2. Provide on road cycle lanes/advisory cycle lanes where possible, 3. Enhance connectivity for cyclists into and through Ennis Town along the R458, part of the R352 and the R871 taking in access to schools along the route. 4. Enhance safety at junctions for cyclists and other road users. 5. Provide new cycle parking. 6. Provide directional, informational and distance signage along the route. 7. Enhance pedestrian facilities eg dropped kerbs at uncontrolled crossings. 8. Connect to R458 route to West Clare Railway Greenway at Mill Road and at Woodquay. 9. Provide an Active Travel Amenity Hub	Decision to grant by Clare County Council subject to conditions on 17th July 2016
16141 Eirgrid plc Knockanean Townland, Tulla Road, Ennis, Co. Clare	For the proposed extension of the existing battery/control room building within the compound of the existing Ennis 110 kV Substation. The Ennis 110 kV Substation is located in the townland of Knockanean on the Tulla Road in Ennis, Co. Clare. The development will consist of an extension to the existing battery/control room, the removal of a redundant telecommunications pole and all associated site works	Decision to Grant by Clare County Council subject to conditions on 7th April 2016
16215 Conor Fanning Tulla Road, Roslevan, Ennis, Co. Clare	To Extend the Appropriate Period of Planning Permission 10-88 for a single storey medical centre with community pharmacy	Decision to grant by Clare County Council on 16th March 2016

CLARE COUNTY COUNCIL REGIONAL PLANNING SEARCH

PREPARED BY AWN CONSULTING LTD.

Planning Reference No., Applicant & Location.	Development Description	Decision & Decision Date.
20420 Roche Ireland Limited Clarehill Td, Clarecastle, Co Clare (c. 5.75km south- south-west of the site)	To apply for a 10 year planning Permission for development which will consist of the phased demolition of all existing buildings, structures and infrastructure on, in, over and under the site of the existing Roche pharmaceutical plant at Clarehill td, Clarecastle, County Clare, including the existing wastewater treatment plant (WWTP) and all associated ancillary infrastructure, with the exception of the ESB compound on Clarehill, the cottage to the north of the site which fronts onto Patrick Street, existing hedgerows and tree cover, all tie in points to utilities and to discharge points at the site boundary, and site boundary fencing. The existing security hut at the main entrance to the site from Clarehill, the existing internal road network, and existing site utilities; including storm water network, water supply network, fire watermain, fire pump house and electrical transformers, will remain for the duration of the proposed development, to be removed upon completion of the proposed development. The phased demolition will require a fenced demolition contractor's compound, to include offices, welfare facilities, material storage areas, bunded storage, and all associated ancillary structures. The demolition contractor's compound will be accessed via the existing entrance from Clarehill, to include a wheelwash and weighbridge. The proposed development will also consist of the phased remediation of three Areas of Environmental Concern (AECs) within the site boundary namely AEC1, the main processing area; AEC2 in the vicinity of the WWTP and the landfill area. The phased remediation will include bulk excavation within temporary negative pressure enclosures, including decontamination units, backfilling of excavated areas, the use of vapour and groundwater extraction wells, and a modular vacuum plant. The proposed development will also include a fenced remediation contractor's compound, contractor's car park, and a container storage area. The remediation contractor's compound will be accessed via the existing acce	Decision to grant by Clare County Council subject to conditions on 23rd December 2020
19988		
Roche Ireland Limited Clarehill Td, Clarecastle, Co Clare	To erect a modular office building to facilitate workers during the site decommissioning and to carry out all associated ancillary works. This application refers to an Establishment which holds an Integrated Pollution Control Licence and to which the European Communities (Control of Major Accident Hazards involving Dangerous Substances) Regulations 2006 applies	Decision to grant by Clare County Council subject to conditions on 18th February 2020
(c. 5.75km south- south-west of the porposed site)		

Planning Reference No., Applicant & Location.	Development Description	Decision & Decision Date.
18717/ PL03.305434 Amarenco Solar Ennistymon Ltd Ballingaddy East, Ennistymon, Co. Clare (c. 26.2km west- north-west of the proposed site)	For a 5MW solar farm comprising approximately 22,200 photo- voltaic panels on ground mounted frames within a site area of c. 11.8 hectares, 2 no. single storey delivery station, security fencing, CCTV, new road access on the Ballingaddy East Road (L5124) and all associated ancillary development works	Following an appeal, ABP granted permission subject to conditions on 21 st January 2020
20318 The Electricity Supply Board (ESB) Moneypoint Generating Station, Carrowdotia North and Carrowdotia South, Kilimer, Co Clare (c. 43.3km South West of the proposed site)	For development on a c. 2.7 ha site located within Moneypoint Generating Station, Carrowdotia North and Carrowdotia South, Kilimer, County Clare (Eircode V15 R963) which is licensed by the Environmental Protection Agency (EPA) under an Industrial Emissions (IE) Licence (Ref. P0605-04) and an Upper Tier COMAH site and therefore falls under the requirements of the Control of Major Accident Hazard Regulations(COMAH) Regulations, 2015. The development, which will be located within a fenced compound c. 0.4 ha, will consist of a up to 400 MVA (electrical rating) synchronous condenser which shares the existing 400 KV/17 kV transformer and 400kV underground cable belonging to the existing coal fired unit 2. The following plant will be included within the compound: (a) main building (c. 420sq.m., c. 15m high) to house equipment including the synchronous condenser, flywheel, lube oil skid, air compressor and pumps. (b) supporting items of plant including; cooling equipment (c. 690sq.m., c. 3m high); c. 7m high modular containers to house electrical and control equipment (total area of c. 384sq.m.); auxiliary transformer (c. 48sq.m., 7m high) and electrical plant including an external circuit breaker (c. 66sq.m., c. 9m high); connections to existing site services networks including electrical, water and wastewater and an underground surface water attenuation tank connecting to existing surface water drains. (c) all other ancillary and miscellaneous site works including site clearance, site access, internal roads and development of areas of hard standing including a maintenance laydown area. (d) the development will be bounded by a c. 3m high chainlink fence. Site access will be by means of a new c. 2.7 m high palisade gate accessed from a new internal road within the station site. PERMISSION is also sought to continue the use of the existing underground cable grid connection, including the 400kV/17kV transformer and 400 kV underground cable belonging to the existing coal fired Unit 2 for use by the synchronous condenser i	Decision to grant by Clare County Council subject to conditions on 16 th July 2020
19746 The Electricity Supply Board (ESB) Moneypoint Generating Station,	For development on a c. 1.8 ha site located within Moneypoint Generating Station, Carrowdotia North and Carrowdotia South, Kilimer, County Clare (Eircode V15 R963) which is licenced by the Environmental Protection Agency (EPA) under an Industrial Emissions (IE) Licence (Ref.P0605-04) and Upper Tier COMAH site and therefore falls under the requirements of the Control of Major Accident Hazard Regulations (COMAH) Regulations, 2015. The development, which will be located within a fenced	Decision to grant by Clare County Council subject to conditions on 20th November 2020

Planning Reference No., Applicant & Location.	Development Description	Decision & Decision Date.
Carrowdotia North, Kilimer , Co Clare (c. 43.3km South West of the proposed site)	compound c. 0.94 ha. will consist of a 300 to 400 MVA (electrical rating) synchronous condenser, including the following elements: a) a Generator and Flywheel building (c. 962 sq.m., c. 15m high) to house equipment including the generator, flywheel, lube oil skid, air compressor and pumps; b) supporting items of plant located within the compound including *cooling equipment (c. 690 sq.m., c. 3m high); *c. 7m high modular containers to house electrical and control equipment (total area of c. 384sq.m); *a generator step-up transformer (c.150 sq.m c. 8m high), auxilary transformer (c. 48 sq.m., 7m high) and electrical plant including an external circuit breaker (c 66 sq.m., c. 9m high); *fire fighting water tank (c. 7m dia., c. 8m high, pump house (c. 21 sq.m., c. 3m high); and * an above-ground oil separator and collection pit (c. 72sq.m.) connections to existing site services networks including electrical, water and wastewater and an underground surface water attenuation tank connecting to existing surface water drains; c) all other ancillary and miscellaneous site works including site clearance; site access, internal roads and development of areas of hard standing including a maintenance lay-down area; and d) the development will be bounded by a c. 3m high chainlink fence. Site access will be by means of a new c. 2.7 m high palisade gate accessed from existing roads within the station site. Planning Permission is being sought for a duration of 10 years.	
In January 2021, ESB and Equinor submitted a Foreshore License application to the Department of Housing, Local Government and Heritage. (application is not yet available) (c. 103km South West of the proposed site and 16km offshore)	 Moneypoint Offshore Wind Farm is ESB and Equinor's flagship floating offshore wind development project proposed in Ireland. If developed, the project will be delivered in two phases. The first phase, Moneypoint Offshore One is located 16km off the Clare /Kerry Coast. The expected capacity from the first phase is estimated to be 400MW with the final windfarm area likely to be in the order of 70km2. The second phase, Moneypoint Offshore Two would be located a further 20km west of Moneypoint Offshore One, taking the total project capacity to between 1GW – 1.5GW. The latter phase would have a likely area of 200km2. The expected capacity output of the project as a whole, could provide enough energy to power up to 1.5 million homes. The grant of a Foreshore license will convey the right to undertake preliminary survey work and site investigation studies for what could be the location of the Moneypoint Offshore One Wind farm and its grid connection route. Such site investigation studies relate to the cable corridor, cable landfall areas, and the indicative location of the site respectively. The results of the proposed survey work, in conjunction with other desktop studies, will assist in determining the feasibility of developing an offshore wind farm at this location. Should the site be deemed suitable for an offshore windfarm, ESB and Equinor aim to seek planning permission for the project at the appropriate time under the terms of the Marine Planning and Development Management Bill which is due to be enacted in 2021. 	Application has not yet been formally accepted by the department (Project Information (moneypointoffshore wind.ie)
178007	For a proposed development at Glór, Causeway Link, Ennis, Co. Clare which will consist of: Construction of an extension	Decision to grant by Clare County Council

Planning Reference		
No., Applicant & Location.	Development Description	Decision & Decision Date.
Clare County Council Causeway Link, Ennis, Co. Clare (c. 3km South west of the proposed development)	adjoining to the existing glór theatre building to provide a new public library, gallery space and associated office space. The proposed structure will range from one to three storeys in height with a floor area of 2320sqm. Landscaping, public realm works and ancillary works are also proposed as part of the development. External works include the relocation of the existing road entrance to the public area car park and modifications to the existing car park layout to provide 97 car parking spaces and service bays for deliveries	subject to conditions on 19th February 2018
19231		
Valley Healthcare Fund Infrastructure Investment Fund ICAV Braids Mill, Station Road, Old Gaol Road, Ennis, Co. Clare (c. 3.7km South West of the proposed site)	For a mixed use development consisting of (I) demolition of existing warehouse buildings and associated structures on site, (ii) a four storey primary care health facility with associated roof plant and photovoltaic arrays comprising a maximum gross floor area of 7,020 sq.m; (iii) retail unit with a gross floor area of 115sq.m; (iv) café / coffee shop with a gross floor area of 115 sq.m; (v) on site car parking and bicycle provision; (vi) additional off site car parking to serve the development with public car park access outside of operating hours and at weekends; (vii) associated building signage; (viii) ESB Substation and Gas skid; (ix) landscaping and all ancillary signage; and (x) all associated site development works	Decision to grant by Clare County Council subject to conditions on 5th December 2019
21226 Philip Doyle Station Road and Old Gaol Road, Ennis, Co Clare (c. 3.8km South West of the proposed site)	For revisions and amendments to a permitted mixed use development (P19/231) currently under construction at Station and Old Gaol Road, Ennis, Co Clare. Planning PERMISSION is sought for (1) an increase in floor area of the four storey primary care health facility and ancillary commercial units from 7,250sqm to 8,008sqm with the provision of an additional floor set back at roof top level; and (2) provision of additional deck of car parking within the existing permitted car park area to provide for 63 no. car parking spaces. Amendment works include (i) Relocation of permitted plant store from roof level to the ground floor within the confines of the existing building footprint; (ii) Provision of a fifth floor set back at roof top level with ancillary roof plant; (iii) Removal of permitted PV panels form roof level; (iv) Modification to the layout of permitted car park to reduce car parking from 62 no. to 57 no. spaces and provision of additional deck of car parking accommodating 63 no spaces; (v) Provision of additional bicycle parking spaces; and (vi) all associated site development works. RETENTION permission is sought for (a) Internal relocation of permitted lift shaft extending from ground floor to roof level (b) Minor changes to window and door treatment on the western and eastern facades; and (c) Relocation of permitted external ESB substation and switchroom within the site	Decision due by Clare County Council on 9 th of May 2021
20658 MCRE Windfarm Ltd (MCRE) Cahermurphy, Knokcnahila More South,	For the development of a windfarm in the townlands of Cahermurphy, Knocknahila More South, Carrownagry South, Caheraghacullin and Drummin, together with the development of an underground grid connection cable to the National Grid in the townlands of Cahermurphy, Drummin, Doolough, Glenmore, and Booltiagh. The development will consist of 1. Construction of up to 10 no. wind turbines with a maximum overall blade tip height of up to 170 metres and associated hard strand areas. 2. 1 no. permanent meteorological mast with a maximum height of up to 100 metres. 3. 1 no. 38kV permanent electrical substation which will be constructed at one of two possible locations on site: either Option A in Carrownagry South townland or Option B in	Application received by Clare County Council on 18 th September 2020. Decision on hold pending further information

Planning Reference No., Applicant & Location.	Development Description	Decision & Decision Date.
Carrownagry South, Caheraghacullin, Drummin, Doolough, Glenmore & Booltiagh Co Clare (c. 30.2km west- south-west of the proposed site)	Cahermurphy townland. The electrical substation will have 1 no. control building with welfare facilities, all associated electrical plant and equipment, security fencing, all associated underground cabling, waste water holding tank and all ancillary works. 4. All associated under-ground electrical and communications cabling connecting the turbines to the proposed on-site substation. 5. All works associated with the connection of the proposed wind farm to the national electricity grid via an underground cable to the existing Booltiagh 110kV substation. 6. Upgrade of existing tracks, roads and provision of new site access roads and hardstand areas. 7. Junction access road works. 8. 2 no. borrow pits. 9. 1 no. temporary construction compound. 10. Site Drainage. 11. Forestry Felling to facilitate construction and operation of the proposed development; and 12. All associated and ancillary site development works. The application is seeking a ten year planning permission and 30 year operational life from the date of commissioning of the wind farm. An Environmental Impact Assessment Report (EIAR) and a Natura Impact Statement (NIS) have been prepared in respect of the proposed development	
SC03.303105		
Coillte		Approved for
Carrownagowan, Co. Clare	Application to ABP for Strategic development status for proposed wind farm of between 20 and 25 turbines with an approximate yield of 90 MW.	Strategic Development status by ABP on 1 st of November 2019
(c. 24.2km east- south-east of the proposed site)		

CRITERIA FOR RATING THE MAGNITUDE AND SIGNIFICANCE OF IMPACTS AT EIA STAGE NATIONAL ROADS AUTHORITY (NRA-TII, 2009)

Table 1 Criteria for Rating Site Attributes – Estimation of Importance of S	oil and Geology Attributes
(NRA)	

(NRA) Importance	Criteria	Typical Example
Very High	contamination is significant on a national or regional scale. Volume of peat and/or soft organic soil underlying route is significant on	r Geological feature rare on a ilregional or national scale (NHA). aLarge existing quarry or pit. Proven economically extractable mineral resource
High	a national or regional scale. Attribute has a high quality significance or value on a local scale Degree or extent of soi contamination is significant on a local scale. Volume of peat and/or soft organic soil underlying route is significant or a local scale.	Wastes. Geological feature of high value on a local scale (County Geological Site). Well drained and/or high fertility
Medium	contamination is moderate on a loca scale. Volume of peat and/or soft organic soil underlying route is moderate or a local scale	Contaminated soil on site with previous light industrial usage. ISmall recent landfill site for mixed Iwastes. Moderately drained and/or moderate fertility soils. CSmall existing quarry or pit. Sub-economic extractable mineral resource.
Low	Attribute has a low quality significance or value on a local scale Degree or extent of soi contamination is minor on a loca scale. Volume of peat and/or soft organic soil underlying route is small on a local scale.	Small historical and/or recent landfill site for construction and demolition wastes. Poorly drained and/or low fertility

Table 2 Criteria for Rating Site Attributes – Es	timation of Importance of Hydrogeological Attributes
(NRA)	

Importance	Criteria	Typical Examples
Extremely High	Attribute has a high quality or value on an international scale	Groundwater supports river, wetland or surface water body ecosystem protected by EU legislation e.g. SAC or SPA status.
Very High	Attribute has a high quality or value on a regional or national scale	Regionally Important Aquifer with multiple well fields. Groundwater supports river, wetland or surface water body ecosystem protected by national legislation – NHA status. Regionally important potable water source supplying >2500 homes. Inner source protection area for regionally important water source.
High	Attribute has a high quality or value on a local scale	Regionally Important Aquifer. Groundwater provides large proportion of baseflow to local rivers. Locally important potable water source supplying >1000 homes. Outer source protection area for regionally important water source. Inner source protection area for locally important water source.
Medium	Attribute has a medium quality or value on a local scale	Locally Important Aquifer. Potable water source supplying >50 homes. Outer source protection area for locally important water source.
Low	Attribute has a low quality or value on a local scale	Poor Bedrock Aquifer Potable water source supplying <50 homes

Table 3 Criteria for Rating Impact Significance at EIS Stage – Estimation of Magnitude of Impact on Soil/ Geology Attribute (NRA)

Magnitude of Impact		Typical Examples
Large Adverse	Results in loss of attribute	Loss of high proportion of future quarry or pit reserves. Irreversible loss of high proportion of local high fertility soils. Removal of entirety of geological heritage feature. Requirement to excavate/remediate entire waste site. Requirement to excavate and replace high proportion of peat, organic soils and/or soft mineral soils beneath alignment.
Adverse	Results in impact on integrity of attribute or loss of part of attribute	Loss of moderate proportion of future quarry or pit reserves. Removal of part of geological heritage feature. Irreversible loss of moderate proportion of local high fertility soils. Requirement to excavate/remediate significant proportion of waste site. Requirement to excavate and replace moderate proportion of peat, organic soils and/or soft mineral soils beneath alignment.
Small Adverse	Results in minor impact on integrity of attribute or loss of small part of attribute	Loss of small proportion of future quarry or pit reserves. Removal of small part of geological heritage feature. Irreversible loss of small proportion of local high fertility soils and/or high proportion of local low fertility soils. Requirement to excavate/remediate small proportion of waste site. Requirement to excavate and replace small proportion of peat, organic soils and/or soft mineral soils beneath alignment.
Negligible	Results in an impact on attribute but of insufficient magnitude to affect either use or integrity	
Minor Beneficial		Minor enhancement of geological heritage feature
Noderate Repeficial	Results in moderate improvement of attribute quality	Moderate enhancement of geological heritage feature
	· · ·	Major enhancement of geological heritage feature

Table 4 Criteria for Rating Impact Significance at EIS Stage – Estimation of Magnitude of Impact on Hydrogeological Attribute (NRA)

Magnitude of Impact	Criteria	Typical Examples
Large Adverse	Results in loss of attribute and /or quality and integrity of attribute	Removal of large proportion of aquifer. Changes to aquifer or unsaturated zone resulting in extensive change to existing water supply springs and wells, river baseflow or ecosystems. Potential high risk of pollution to groundwater from routine run-off. Calculated risk of serious pollution incident >2% annually.
Moderate Adverse	Results in impact on integrity of attribute or loss of part of attribute	Removal of moderate proportion of aquifer. Changes to aquifer or unsaturated zone resulting in moderate change to existing water supply springs and wells, river baseflow or ecosystems. Potential medium risk of pollution to groundwater from routine run-off. Calculated risk of serious pollution incident >1% annually.
	Results in minor impact on integrity of attribute or loss of small part of attribute	
Negligible	Results in an impact on	Calculated risk of serious pollution incident

Importance	Magnitude of I	mportance				
of Attribute	Negligible	Small Adverse	Moderate Adverse	Large Adverse		
Extremely	Imperceptible	Significant	Profound	Profound		
High		-				
Very High	Imperceptible	Significant/moderate	Profound/Significant	Profound		
High	Imperceptible	Moderate/Slight	Significant/moderate	Profound/Significant		
Medium	Imperceptible	Slight	Moderate	Significant		
Low	Imperceptible	Imperceptible	Slight	Slight/Moderate		

Table 5 Rating of Significant Environmental Impacts at EIS Stage (NRA)

SOIL AND GROUNDWATER QUALITY RESULTS

Table 1 Analytical test results compared to LQM/CIEH thresholds

Sample Type Sample Depth				_	EMT	EMT
Sample Depth						
Sample Type Sample Depth Sample Date					20/6735	20/6735
Sample Depth Sample Date					Soil	Soil
Sample Date					0.5	0.5
					06/05/2021	06/05/2021
Parameters	Units	LOD	LQM/CIEH S4ul for HHRA Residental Threshold (mg/kg)	LQM/CIEH S4ul for HHRA Commercial Threshold (mg/kg)		
	-					
Arsenic	mg/kg	<0.5	40	640	2.8	3.1
Cadmium	mg/kg	<0.1	85	190	0.3	0.4
Chromium III	mg/kg	<0.5	910	8,600	12.6	14
Copper	mg/kg	<1	7,100	68,000	4	4
Mercury	mg/kg	<0.1	1.2	58 ^{vap} (25.8)	0.1	0.1
lickel	mg/kg	<0.7	180	980	6.2	5.4
Selenium	mg/kg	<1	430	12,000	-	-
Zinc	mg/kg	<5	40,000	730,000	13	11
Benzene	mg/kg	<0.005	0.38	27	-	-
Foluene	mg/kg	<0.005	880 ^{vap} (869)	56,000 ^{vap} (869)	-	-
Ethylbenzene	mg/kg	<0.005	83	5,700 ^{vap} (518)	-	
n & p-Xylene		<0.005	161	12,800 ^{vap/} (625&576)	-	-
n & p-Xylene p-Xylene	mg/kg	<0.003	88	6,600 ^{sol} (478)	-	-
-луюне	mg/kg	-0.003	00	0,000 (478)	-	-
Aliphatic						
≻C6-C8	mg/kg	<0.1	100	3,200 (304) ^{sol}	-	-
>C8-C10	mg/kg	<0.1	27	7,800 (144) ^{sol}	-	-
>C10-C12	mg/kg	<0.2	130 (48) ^{vap}	2,000 (78) ^{sol}	-	-
>C12-C16	mg/kg	<4	1100 (24) ^{sol}	9,700 (48) ^{sol}	-	-
>C16-C21	mg/kg	<7	65000 (8.48) ^{f.sol}	1,600,000	-	-
>C21-C35	mg/kg	<7	65000 (8.48) ^{f,sol}	1,600,000	-	-
>C35-C40	mg/kg	<7	65000 (8.48) ^{f,sol}	1,600,000	-	-
Aromatics						
>C5-EC7	mg/kg	<0.1	370	26,000 (1220) ^{sol}	-	-
EC7-EC8	mg/kg	<0.1	860	56,000 (389) ^{vap}	-	-
EC8-EC10	mg/kg	<0.1	47	3,500 (613) ^{vap}	-	-
>EC10-EC12	mg/kg	<0.2	250	16,000 (364) ^{sol}	-	-
>EC12-EC16	mg/kg	<4	1,800	36,000 (169) ^{sol}	-	-
>EC16-EC21	mg/kg	<7	1,900	28,000	-	-
>EC21-EC35	mg/kg	<7	1,900	28,000	-	-
>EC35-EC <mark>40</mark> **	mg/kg	<7	1,900	28,000	-	-
Acenaphthene	mg/kg	<0.05	3,000 ^{sol} (57.0)	84,000 ^{sol} (57.0)	-	-
Acenaphthylene	mg/kg	<0.03	2,900 ^{sol} (86.1)	83,000 ^{sol} (86.1)		-
Anthracene	mg/kg	<0.03	31,000 ^{vap} (1.17)	520,000	-	-
Benzo(a)anthracene	mg/kg	<0.04	11	170	-	
Benzo(a)pyrene	mg/kg	<0.00	3.2	35	-	
Benzo(a)pyrene Benzo(b)fluoranthene		<0.04	3.9	44	-	
Benzo(ghi)perylene	mg/kg mg/kg	<0.05	360	3,900	-	-
Benzo(ghi)peryiene Benzo(k)fluoranthene		<0.04	110	1,200		
()	mg/kg	<0.02	30	350	-	-
Chrysene Dibenzo(ah)anthracene	mg/kg	<0.02	0.31	350	-	-
× /	mg/kg					
luoranthene	mg/kg	< 0.03	1,500	23,000	-	-
Fluorene	mg/kg	<0.04	2,800 ^{sol} (30.9)	63,000 ^{sol} (30.9)	-	-
ndeno(123cd)pyrene	mg/kg	<0.04	45	500	-	-
Naphthalene	mg/kg	< 0.04	2	190 ^{sol} (76.4)	-	-
Phenanthrene	mg/kg	< 0.03	1,300 ^{sol} (36.0)	22,000	-	-
Pyrene	mg/kg	<0.03	3,700	54,000	-	-
Legend 0.	.45 Results exceed I OM/C	IEH S4ul for HHRA R	esidential Threshold <u>without</u>	homegrown produce at 1	% SOM (ma/ka)	

nv Guideline threshold value not available

Notes

HIRA 2015 - LQM/CIEH Suitable 4 Use Levels based on 'Commercial' and/or 'residential' land use using 1% SOM. Metals are compared against a 6% SOM * Aliphatic >C35-C40 was considered * Aromatic >EC35-EC40 was considered

* Aromatic >C35-C40 was considered

Sol : sol S4UL presented exceed the solubility saturation limit, which is presented in brackets Vap: vap S4UL presented exceed the vapour stauration limit which is presented in brackets

Table 2 Analytical test results compared to WAC thresholds

Sample ID						TP12	TP16
Laboratory						EMT	EMT
Report						21/6780	21/6780
Sample Type						Soil	Soil
Sample Depth	1					.50	.50
Sample Date						20/04/2021	20/04/2021
			Landfill	Waste Aco	ceptance		
			С	riteria Lim	its		
Parameters	Units	LOD	Inert Waste Landfill	Stable Non- reactive	Hazardo us Waste Landfill		
Solid Waste Analysis							
Total Organic Carbon	%	<0.02	3	5	6	nm	nm
Sum of BTEX	mg/kg	<0.025	6	nv	nv	nm	nm
Sum of 7 PCBs	mg/kg	<0.035	1	nv	nv	nm	nm
Mineral Oil	mg/kg	<30	500	nv	nv	-	-
PAH Sum of 6	mg/kg	<0.22	nv	nv	nv	-	-
PAH Sum of 17	mg/kg	<0.64	100	nv	nv	-	-
Eluate Analysis		0.005					1
Arsenic	mg/kg	<0.025	0.5	2	25	-	-
Barium	mg/kg	< 0.03	20	100	300	-	-
Cadmium	mg/kg	< 0.005	0.04	1	5	-	-
Chromium	mg/kg	< 0.015	0.5	10	70	-	-
Copper	mg/kg	< 0.07	2	50	100	-	-
Mercury	mg/kg	<0.0001	0.01	0.2	2	-	-
Molybdenum	mg/kg	< 0.02	0.5	10	30	-	-
Nickel	mg/kg	< 0.02	0.4	10	40	-	-
Lead	mg/kg	< 0.05	0.5	10	50	-	-
Antimony	mg/kg	< 0.02	0.06	0.7	5	-	-
Selenium	mg/kg	< 0.03	0.1	0.5	7	-	-
Zinc	mg/kg	< 0.03	4	50	200	-	-
Chloride	mg/kg	<3 <3	800	15,000	25,000	nm	nm
Fluoride Sulphate as SO4	mg/kg	<3 <5	10 1,000	150 20,000	500 50,000	nm nm	nm nm
Total Dissolved Solids	mg/kg	<5 <350	4.000	60,000	100.000	450	-
Phenol	mg/kg	<350	4,000	00,000 nv	100,000 nv	450 nm	- nm
Dissolved Organic Carbon	mg/kg mg/kg	<0.1	500	800	1,000	40	20
Asbestos	mg/kg mass %	~20	500	000	1,000	40 NAD	20 NAD
ASU62102	mass %					NAU	NAD
Notes:							
XX	-	nert Waste Lii					
XX	⊏xceedence :	Stable Non-rea	active vvas	e Limit		wnconc	ulting

XX	Exceedence Inert Waste Limit
XX	Exceedence Stable Non-reactive Wast
XX	Exceedence Hazardous Waste Limit
-	Results below LOD
nm	Not meeasured
NAD	No Asbestos Detected

Location	Date								
	Date	Borehole Depth (m)	SWL (mAOD) Note *	pH	Temp (°C)	EC (uS/cm)		Comments/ obser	rvations
					Groundwater	1	1		
				-		(800 or 1875) (note 1)	Groundwater Regula	ations SI No. 9 of 20	10, and 366 of 2015
				≥6.5 and ≤9.5		1,000	EPA IGVs (2003)		
PBH01	10/05/2021 13/01/2022	15.00	6.58 6.86	7.60 7.47	10.6	774 646	Slightly murky to clear Clear, NEC	r, NEC	
PBH01A	10/05/2021	5.00	6.79	7.62	10.0	650	Slightly murky, NEC		
	13/01/2022 10/05/2021		7.00 8.37	7.37 7.90	9.5 11.9	639 639	Clear, NEC Slightly murky, NEC		
PBH02	13/01/2022	10.00	8.42	7.30	nm		SWL measurement or	nly	
PBH03	10/05/2021	12.00	13.52	10.90	11.2	547			r, value not repeated)
PBH04	13/01/2022 10/05/2021	45.00	15.49 27.59	7.38 7.40	9.2	686 815	Slightly murky, NEC; I Slightly murky, slight of		julia level
гъпо4	13/01/2022	15.20	29.02	7.44	10.7	816	Slightly murky, NEC		
PBH04A	10/05/2021 13/01/2022	5.00	28.02 29.42	<u>9.60</u> 7.34	9.4	406	Brown/orange murky		C (pH value not repeated)
PBH05	10/05/2021	15.00	14.68	7.80	11.6	644	Slightly murky, NEC		
	13/01/2022 10/05/2021		15.13	7.30	11.1 12.1	786	Slightly turbid, NEC; / Slightly murky/ silty, N		
PBH05A	13/01/2022	6.50	15.15	6.94	11.2	1,005	Strong sulfur odour, c		Jeaned)
BH01	13/01/2022	25.00	9.15		nm		SWL measurement or	nly	
	,			-11	Surface water	F0 (+0(+++)	DO (%)	Quefe es Mister D	01 070 -6 0000
Location	Date			pH	Temp (°C)	EC (uS/cm)	DO (%) / mg/l		egs SI 272 of 2009
	Duto			Soft water (2) Hard water (3)	Note (4)	Note **	-	Comments/ observ	vations
Ballymachill River	13/01/2022			8.06	7.7	619	99.8 / 11.50	Clear, NEC	
P1 (Ardnamurray Lough)	13/01/2022			7.46	5.1	590	99.44 /11.44	Clear, NEC	
	13/01/2022	N/A		7.34	8.0	680	100.24 / 11.39	Slightly turbid, NEO	C (Spring discharge to surfac
P4 (Main Spring)		IN/F	10		1.000	1.000	99.66 / 11.45	water)	•
North Ponds North East Ponds	13/01/2022 13/01/2022		-	8.15 7.90	6.6 4.6	666 369	101.34 / 11.16	Slightly turbid, NEO Slightly turbid, NEO	
Tooreen Lough	13/01/2022			7.65	7.2	697 ured in metres below top of	100.43 / 11.51	Clear, NEC	
			suits. metai	, Dissolved (Water)					24
		it: Tom McNam ition: Ennis, Co Ref: ART Data 21/1245	nara & Partner o. Clare						The server handling The server handling batter 17, batter 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
		tion: Ennis, Co Ref: ART Data	nara & Partner o. Clare				Groundwater		The Tecpro Building, Clombaugh Business & Technology Pa Dublin 17, Ireland.
Sample ID	Ref: :	tion: Ennis, Co Ref: ART Data	nara & Partner o. Clare		PBH01 (Dee	p) PBH01A (S		BH04 (Deep)	The Tecpro Building, Clonshaugh Business & Technology Pi Dublin 17, Ireland.
	Ref: :	tion: Ennis, Co Ref: ART Data	nara & Partner o. Clare	s	PBH01 (Dee	p) PBH01A (S Eleme	ihallow) P	BH04 (Deep) Element	The Report Building. Daring Building. The State of the State of the State of the State The State of the State of the State The State of the State of the State State of the State of the State of the State State of the State of the State of the State State of the State of the State of the State State of the State of the State of the State State of the State of the State of the State State of the State of the State of the State of the State State of the State of the State of the State of the State State of the State of the State of the State of the State State of the State
aboratory ample Type	Ref: :	tion: Ennis, Co Ref: ART Data	hara & Partner D. Clare acentre	s		Eleme	shallow) Plent vater C		PBH04 (Shallow)
aboratory ample Type	Ref: :	tion: Ennis, Co Ref: ART Data	hara & Partner b. Clare acentre Detail:	s	Element	Eleme	ihallow) Pi	Element	PBH04 (Shallow)
aboratory ample Type	Ref: :	tion: Ennis, Co Ref: ART Data 21/1245	hara & Partner 5. Clare acentre Detail:	s IGV	Element	Eleme	shallow) Plent vater C	Element	PBH04 (Shallow)
aboratory ample Type ample Date Parameter s	Ref:	tion: Ennis, Co Ref: ART Data 21/1245	hara & Partner b. Clare acentre Detail: GT\ (Ground)	s lGV vater) (Groundwater)	Element	Eleme	shallow) Plent vater C	Element	PBH04 (Shallow) Element Groundwater
aboratory ample Type ample Date Parameters ssolved Arsenic	Ref:	tion: Ennis, Co Ref: ART Data 21/1245	ara & Partner . Clare acentre Detail: (Groundy 0.007	s IGV vater) (Groundwater) 5 0.01	Element Groundwate	r Groundv	ihallow) Pi ent vater C 10/05/2021	Element Groundwater	PBH04 (Shallow) Element Groundwater 0.0025
aboratory ample Type ample Date Parameters issolved Arsenic issolved Barium	Ref: D rs Un mg mg	ition: Ennis, Co Ref: ART Data 21/1245 its MDL g/l 0.0025 g/l 0.003	Aara & Partner . Clare acentre Detail: (Groundy 0.007 nv	s IGV vater) (Groundwater) 5 0.01 0.1	Element	r Groundy	ihallow) Pi ent vater C 10/05/2021	Element Groundwater	PBH04 (Shallow) Element Groundwater
aboratory ample Type ample Date Parameters issolved Arsenic issolved Barium issolved Beryllium	Ref: D rs Un mg i mg	ition: Ennis, Co Ref: ART Data 21/1245 its MDL g/1 0.0025 g/1 0.003 g/1 0.005	Aara & Partner . Clare acentre Detail: (Ground (0.007 nv nv	s IGV water) (Groundwater) 5 0.01 0.1 <i>nv</i>	Element Groundwate	Eleme r Groundv - 0.02	ihallow) Pi ent vater C 10/05/2021	Element Groundwater - 0.068 -	PBH04 (Shallow) PBH04 (Shallow) Element Groundwater 0.0025 0.033 -
aboratory ample Type ample Date Parameters ssolved Arsenic ssolved Barium ssolved Beryllium ssolved Boron	Ref: D rs Un mg mg i mg	ition: Ennis, Co Ref: ART Data 21/1245 itis MDL g/l 0.0025 g/l 0.003 g/l 0.005 g/l 0.0012	Aara & Partner . Clare acentre Detail: (Grounds (Grounds) 0.007 nv nv 0.75	s IGV vater) (Groundwater) 5 0.01 0.1 <i>nv</i> 1	Element Groundwate - 0.037 - 0.012	r Groundv r	ihallow) Pi ent vater C 10/05/2021	Element Groundwater - 0.068 - 0.017	PBH04 (Shallow) PBH04 (Shallow) Element Groundwater 0.0025 0.033 - 0.019
aboratory ample Type Date Parameters ssolved Arsenic ssolved Baruium ssolved Beryllium ssolved Boron ssolved Cadmium	rs Un mg i mg i mg i mg i mg	tion: Ennis, Co Ref: ART Data 21/1245 its MDL g/1 0.0025 g/1 0.003 g/1 0.005 g/1 0.005	Detail: GTV (Groundy 0.007 0.003	s vater) IGV (Groundwater) 5 0.01 0.1 nv 1 1 75 0.005	Element Groundwate	r Groundy 	ihallow) Pi ent vater C 10/05/2021	Element Groundwater - 0.068 - 0.017 -	PBH04 (Shallow) Element Groundwate 0.0025 0.033 - 0.019
aboratory ample Type ample Date Parameters ssolved Arsenic ssolved Barium ssolved Beryllium ssolved Boron ssolved Cadmium tal Dissolved Chro	Ref: .	MDL g/l 0.0025 g/l 0.0025 g/l 0.0025 g/l 0.003 g/l 0.005 g/l 0.005 g/l 0.0055 g/l 0.0055 g/l 0.0055 g/l 0.0055	Aara & Partner . Clare acentre Detail: (Groundy (Groundy 0.007 <i>nv</i> 0.75 0.003 0.037	s vater) IGV (Groundwater) 5 0.01 0.1 <i>nv</i> 1 75 0.005 5 0.03	Element Groundwate	Eleme r Groundv 0.02	ihallow) Pi ent vater C 10/05/2021	Element Groundwater - 0.068 - 0.017 - 0.0018	0.0025 0.0025 0.0025 0.0025
iboratory imple Type manple Date Parameters ssolved Arsenic ssolved Barium ssolved Barium ssolved Baron ssolved Cardmium ital Dissolved Chro ssolved Copper	Ref: .	MDL g/1 0.0025 g/1 0.003 g/1 0.005 g/1 0.0015 g/1 0.007	Aara & Partner . Clare acentre Detail: (Groundy (Groundy 0.007 <i>nv</i> <i>nv</i> 0.75 0.003 0.003 1.5	s vater) 5 (Groundwater) 5 0.01 0.1 <i>nv</i> 175 0.005 5 0.03 0.03	Element Groundwate	r Groundy	ihallow) Pi ent vater C 10/05/2021	Element Sroundwater - 0.068 - 0.017 - 0.0018 -	0.0025 0.0025 0.0025 0.0025 0.0025 - 0.0025 -
aboratory ample Type ample Date Parameters ssolved Arsenic ssolved Barium ssolved Barium ssolved Barium ssolved Cardmium tal Dissolved Chro ssolved Copper ssolved Lead	Ref: .	ition: Ennis, Co Ref: ART Data 21/1245 itis MDL g/I 0.0025 g/I 0.003 g/I 0.005 g/I 0.0015 g/I 0.0015 g/I 0.0015 g/I 0.0015 g/I 0.0015 g/I 0.005	Aara & Partner . Clare acentre Detail: (Groundu (Groundu (O.007 nv nv 0.007 0.003 0.003 1.5 0.018	s IGV (Groundwater) 5 0.01 5 0.01 0.1 <i>nv</i> 1 75 0.005 5 0.03 5 0.03 75 0.01	Element Groundwate - - 0.037 - - 0.0021 - - 0.0021 -	r Groundy	ihallow) Pi ent vater C 10/05/2021	Element Groundwater - 0.068 - 0.017 - 0.0018 - - -	0.0025 - 0.0025 - 0.0025 - 0.0025 - 0.0025 - 0.0025 - 0.0025 - 0.0025 - 0.0025 - 0.0025 - 0.0025 - 0.0025 - - - 0.0025 - - - 0.0025 -
aboratory ample Type ample Date Parameters ssolved Arsenic ssolved Barlum ssolved Beryllium ssolved Beryllium ssolved Beryllium tal Dissolved Chro ssolved Cadmium tal Dissolved Chro ssolved Lead ssolved Mercury	Ref: D rs Un mg mg mg mg mg mg mg mg mg mg	ition: Ennis, Co Ref: ART Data 21/1245 itis MDL g/l 0.0025 g/l 0.003 g/l 0.0012 g/l 0.0015 g/l 0.007	Aara & Partner . Clare acentre Detail: (Groundy (Groundy 0.007 0.003 0.0037 1.5 0.018 0.000	s vater) (Groundwater) 5 0.01 5 0.01 0.1 nv 1 75 0.005 5 0.03 0.03 0.03 75 0.01 75 0.001	Element Groundwate - - 0.037 - - 0.0021 - - - - - - - -	r Groundy 	ihallow) Pl	Element Groundwater - 0.068 - 0.0017 - 0.0018 - - - - - - - - - - - - -	A Section 2.2 Control (Control (Contro) (Control (Contro) (Contro) (Contro) (Co
aboratory ample Type ample Date Parameters ssolved Arsenic ssolved Barium ssolved Barium ssolved Boron ssolved Cadmium ssolved Cadmium ssolved Cadmium ssolved Cadmium ssolved Lead ssolved Neccury ssolved Nickel	rs Un mg n mg n mg n mg n mg n mg n mg n mg	tion: Ennis, Co Ref: ART Data 21/1245 its MDL g/1 0.0025 g/1 0.003 g/1 0.005 g/1 0.0015 g/1 0.007 g/1 0.007 g/1 0.007 g/1 0.005	Aara & Partner . Clare acentre Detail: (Ground) (Ground) (0.007 nv nv 0.003 0.037 1.5 0.001 0.001	s IGV (Groundwater) 5 0.01 0.1 0.1 1 75 0.005 5 0.03 0.03 75 0.01 75 0.001 5 0.02	Element Groundwate - - 0.037 - - 0.012 - - 0.0021 - - - - - - -	r Groundy 	ihallow) Pl	Element Groundwater 0.068 - 0.017 - 0.0018 - - 0.0018 - - 0.009	Compare Reference
boratory imple Type imple Date Parameters ssolved Arsenic ssolved Barium ssolved Barium ssolved Cadmium ital Dissolved Chro ssolved Capper ssolved Copper ssolved Hercury ssolved Nickel ssolved Selenium	Ref: :	ition: Ennis, Co Ref: ART Data 21/1245 itis MDL g/l 0.0025 g/l 0.003 g/l 0.0015 g/l 0.0015 g/l 0.0015 g/l 0.0015 g/l 0.0015 g/l 0.0015 g/l 0.0025 g/l 0.0015 g/l 0.0020 g/l 0.0015 g/l 0.0021 g/l 0.0021	Detail: Detail: GTV (Groundy 0.007 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.001 0.000 0.001 0.000	s IGV (Groundwater) 5 0.01 5 0.01 0.1 <i>nv</i> 1 75 0.005 5 0.03 0.03 75 0.01 75 0.01 75 0.001 5 0.02 <i>nv</i>	Element Groundwate	r Groundv r - Groundv 0.02	ihallow) Pl	Element Groundwater - 0.068 - 0.017 - 0.0018 - - 0.0018 - - 0.009 -	Compare Notice Compare
aboratory ample Type ample Date Parameters issolved Arsenic issolved Barum issolved Beryllium issolved Beryllium issolved Corpor issolved Copper issolved Copper issolved Lead issolved Mercury issolved Mickel issolved Selenium issolved Vanadium	Ref:	tion: Ennis, Co Ref: ART Data 21/1245	Detail: Detail: (Ground) (Ground) (Ground) (Original October	s vater) IGV (Groundwater) 5 0.01 0.1 0.1 1 75 0.005 5 0.03 0.03 75 0.01 75 0.001 5 0.02 <i>nv</i> <i>nv</i>	Element Groundwate	r Groundy	ihallow) Pl int control of the second	Element Groundwater - 0.068 - 0.017 - 0.0018 - - 0.0018 - - 0.009 - - 0.009 - -	A Strange of the second s
aboratory ample Type ample Date Parameters issolved Arsenic issolved Barum issolved Beryllium issolved Boron issolved Copper issolved Copper issolved Copper issolved Mercury issolved Mickel issolved Selenium issolved Vanadium	Ref: :	tion: Ennis, Co Ref: ART Data 21/1245	Detail: Detail: GTV (Groundy 0.007 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.001 0.000 0.001 0.000	s vater) IGV (Groundwater) 5 0.01 0.1 0.1 1 75 0.005 5 0.03 0.03 75 0.01 75 0.001 5 0.02 <i>nv</i> <i>nv</i>	Element Groundwate - - 0.037 - - 0.012 - - - - - - - - - - -	r Groundv r - Groundv 0.02	ihallow) Pl int control of the second	Element Groundwater - 0.068 - 0.017 - 0.0018 - - 0.0018 - - 0.009 -	Compare Notice Compare
aboratory ample Type ample Date	Ref: D rs Un mg mg mg mg mg mg mg mg mg mg	tion: Ennis, Co Ref: ART Data 21/1245	Detail: Detail: (Groundd (Groundd (Groundd 0.007 <i>nv</i> <i>nv</i> 0.037 1.5 0.018 0.000 0.018 0.000 0.018 0.000 0.007 <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i> <i>nv</i>	s vater) IGV (Groundwater) 5 0.01 0.1 175 0.005 5 0.03 0.03 75 0.01 75 0.001 5 0.02 nv 0.02 nv 0.02 0.02	Element Groundwate	r Groundy	ihallow) Pl	Element Groundwater - 0.068 - 0.017 - 0.0018 - - 0.0018 - - 0.009 - - 0.009 - -	A State of the second sec

Laboratory Test Results: General Suite (Water) Client: Tom McNamara & Partners Location: Ennis, Co. Clare AWN Ref: ART Datacentre Ref: 21/1245

						Groundwater											Surface water				
Sample ID						PBH01 (Deep)	PBH01 (Deep)	PBH01A (Shallow)	PBH01A (Shallow)	PBH04 (Deep)	PBH04 (Deep)	PBH04A (Shallow)	PBH04A (Shallow)	PBH05 (Deep)	PBH05A (Shallow)	IP4 (MAIN SPRING)	NORTH PONDS	NE POND	IP1 (ARDNAMURRY LOUGH)	Tooreen Lough	Ballymachill River
aboratory	Details					Element	Element	Element	Element	Element	Element	Element	Element	Element	Element	Element	Element	Element	Element	Element	Element
Sample Type	1				Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	undwater (dischar	Surface Water	Surface Water	Surface Water	Surface Water	Surface Wate	
Sample Date						10/05/2021	10/05/2021 13/01/2022 10/05/2021 13/01/2022 10/05/2021 13/01/2022 10/05/2021 13/01/2022 13/01/2022 13/01/2022 13/01/2022					13/01/2022	13/01/2022								
Parameters	Units	MDL	GTV (Groundwater)	IGV (Groundwater)	SWTV (AA- EQS)																
Anions & Cations											_										
Calcium	mg/l	0.2	nv	200	nv	79.6	102.1	110.7	119.4	112.9	118.7	71.2	126.3	90.7	180.5	102.2	96.9	40.2	82.9	104.2	94.8
Chloride as Cl	mg/l	0.3	187.5	30	nv	36	20.6	12.6	14	37.4	20.6	35.6	14.9	29.2	19.1	27.6	22.3	24.1	29.5	31.1	21.5
Magnesium	mg/l	0.1	nv	50	nv	13.2	10.6	10.4	7.1	18.8	23.1	16.6	16.1	8.5	13.7	10.6	14.3	8.8	11.1	6	9.2
Potassium	mg/l	0.1	nv	5	nv	3.6	1.4	1.6	0.6	0.9	1.1	1.4	0.5	13.5	2.1	4.2	3.2	7.5	3.7	3	2.6
Sodium	mg/l	0.1	150	150	nv	27.9	14.1	10.2	5.6	20.8	18.7	27.9	23.1	30.2	20.3	13.7	10.3	10.6	15.1	16.3	11.1
Sulphate as SO4	mg/l	0.05	187.5	200	nv	22.7	8.3	8.1	2	10.3	8.2	23.6	9.5	12.2	23.2	12	8.6	-	11.1	10.8	14.4
Nutrients/ Other													1								
Nitrite as NO2	mg/l	0.02	0.375	0.1	0.2	0.34	nt	-	nt	<u>0.11</u>	nt	0.53	nt	nt	nt	nt	nt	nt	nt	nt	nt
Nitrate as NO3	mg/l	0.2	37.5	25	50	1.4	0.7	0.8	1.9	13.5	4.9	9.7	12.7	1.2	-	9.7	12.3	0.9	0.4	5.4	7.2
Total Hardness Dissolved (as CaCO3)	mg/l	1	nv	200	nv	254	300	320	328	361	394	248	383	262	509	300	302	137	254	286	276
Total Alkalinity as CaCO3	mg/l	1	nv	No abnormal change	nv	276	324	1,086	325	661	458	5,777	426	334	547	326	328	143	258	321	298
Ortho Phosphate as PO4	mg/l	0.03	nv (0.035 MRP)	nv	nv	-	nt	-	nt	-	nt	-	nt	nt	nt	nt	nt	nt	nt	nt	nt
Ammoniacal Nitrogen as NH3	mg/l	3	nv	nv	nv	0.04	nt	0.04	nt	0.06	nt	0.25	nt	nt	nt	nt	nt	nt	nt	nt	nt
Carbonate Alkalinity as CaCO3	mg/l	1	nv	nv	nv	-	-	-	-			-	-	-	-	-	-	-	-		-
Bicarbonate Alkalinity as HCO3 (water soluble)	mg/l	1	nv	nv	nv	337	324	1325	325	806	458	7,048	426	334	547	326	328	143	258	321	298
Flouride	mg/l	0.3	nv	1	nv	-	-	-	nt	-	nt	-	nt	nt	nt	nt	nt	nt	nt	nt	nt
Total Dissolved Solids	mg/l	<35	nv	1,000	nv	nt	356	nt	355	nt	463	nt	488	408	612	378	358	214	323	387	349
Fotal Suspended Solids	mg/l	<10	nv	nv	nv	346	nt	381	nt	458	nt	484	nt	nt	nt	nt	nt	nt	nt	nt	nt
(ey 3TV GV	Value exceeds Groundwater Ti Interim Guidelii	hreshold Value) IGV Threshold valu	es exceeded	Note 1	Different GW Three	sholds apply to differe	nt status classificatio	n tests									ļ	awncons	sulting

The Tecpro Building, Clonshaugh Business & Technology Park, Dublin 17, Ireland.

T: + 353 1 847 4220 F: + 353 1 847 4257 E: info@awnconsulting.com W: www.awnconsulting.com

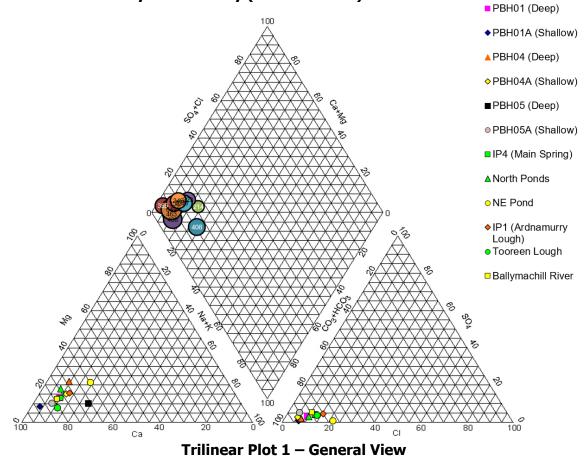
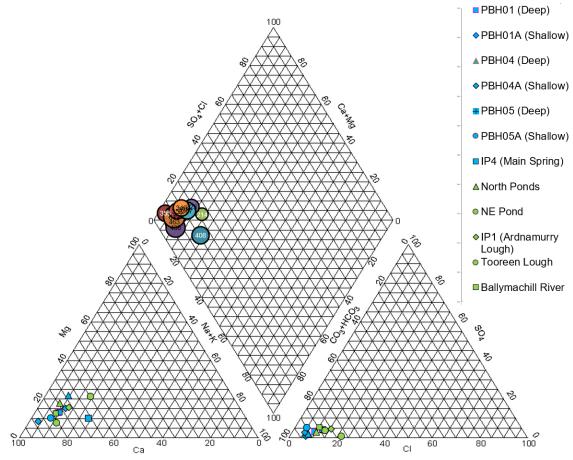

nv Inland waters

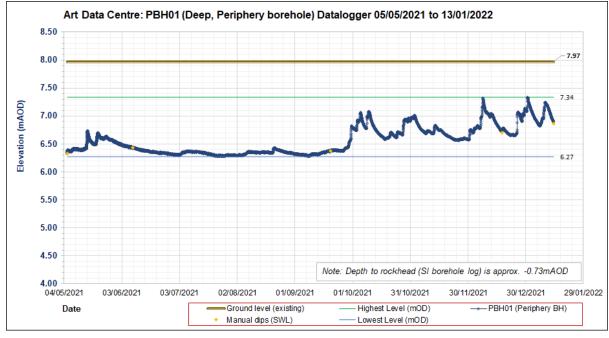
Table 5c

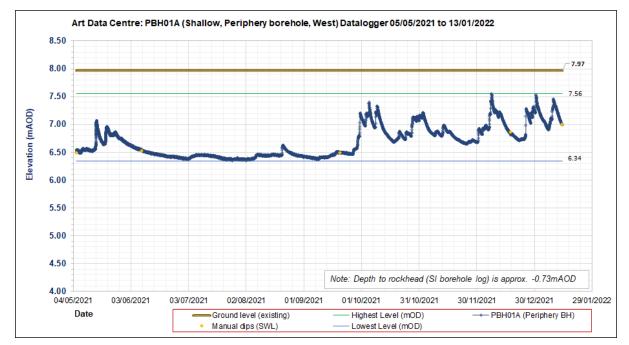

Less than the MDL

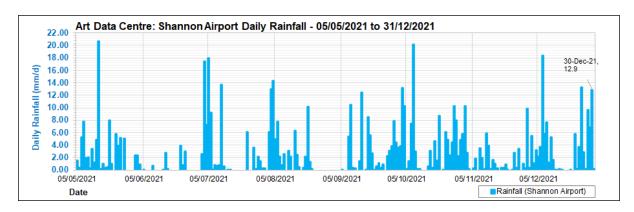
No Value on No Value on No Value (No Value (SWTV used - Surface Water Regs SI No. 272 of 2009; Surface Water Amendment Regs SI No. 386 of 2015) for Inland Waters; <u>Underlined</u> exceeds the AA-EQS for same SWTVs, where available) SWTV (AA-EQS) means that for each representative monitoring point within the waterbody, the arithmetic mean of the concentrations measured over a twelve month monitoring period does not exceed the standard.

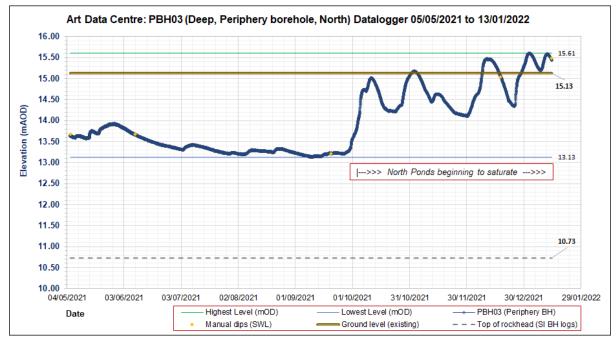
Table 5d	Laboratory Test Results: Hydrocarbons (Water) Client: Tom McNamara & Partners Location: Ennis, Co. Clare AWN Ref: ART Datacentre Ref: 21/1245										
					Groundwater						
Sample ID					PBH01 (Deep)	PBH01A (Shallow)	PBH04 (Deep)	PBH04 (Shallow)			
Laboratory	1				Element	Element	Element				
Sample Type	1		Details		Groundwater	Groundwater	Groundwater	Groundwater			
Sample Date					10/05/2021						
Parameters	Units	MDL	GTV (Groundwater)	IGV (Groundwater)							
EPH (C8-C40)	mg/l	0.01	0.0075	0.01	(14)			2			
Key											
BOLD	Value exceeds th	e Groundwater Thres	hold Value (GTV)								
Underlined	Value exceeds th	e EPA Interim Guide	line Values (IGV)			nv	No value				
	-					nt	Not Tested				
Notes	GTV	Groundwater Thr	eshold Value (S.I. No. 9, 2010 G	Groundwater Regulations)		MDL	Laboratory Method Detection Lin	on Limit (shown in mg/l)			
		Groundwater Thr	Groundwater Threshold Value (S.I. No. 366, 2016 Groundwater (Amendment) Regulations) - Less than the MDL								
	IGV Interim Guideline Values (EPA, 2003)										
		Note 1. Sum of Total Petroleum Hydrocarbons (TPH) including the volatile petroleum hydrocarbons (VPH) range and extractable petroleum hydrocarbons (EPH) range:									
	hydrocarbons C2-C5 and hydrocarbons C6-C40 respectively (S.I. 366 of 2016): The IGV value is a 'catch-all' and includes for analysis of TPH. MTBE, as well as Toluene, Ethylbenzene										

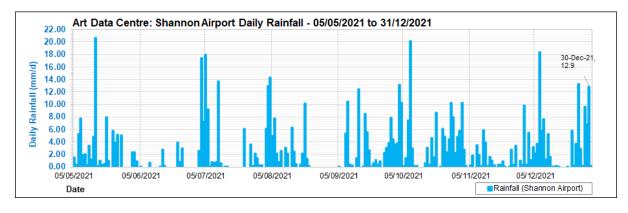


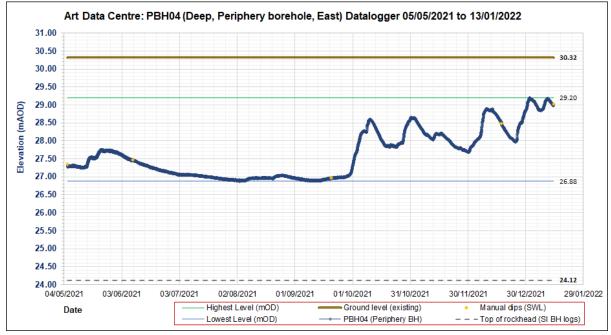

Art Data Centre – Hydrochemistry (Trilinear Plots)

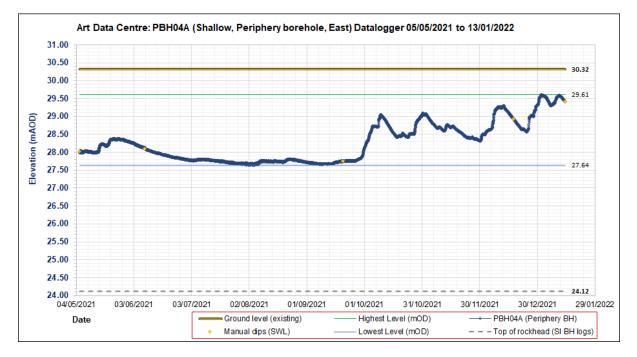


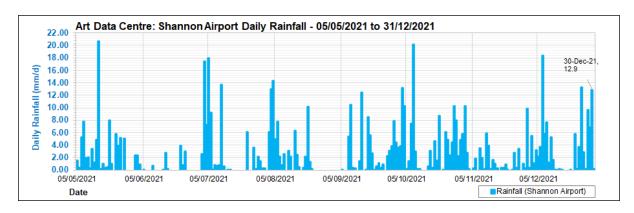

Trilinear Plot 2 – Grouped View (Groundwater v Surface Water)

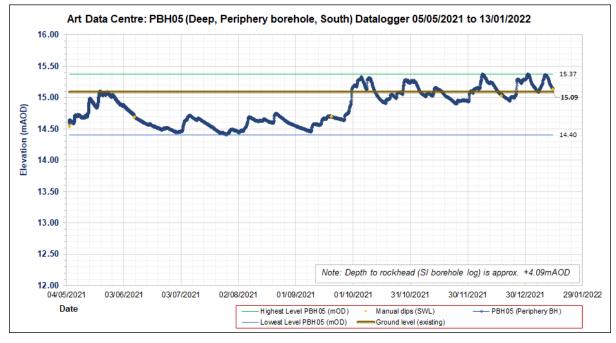

HYDROGRAPHS

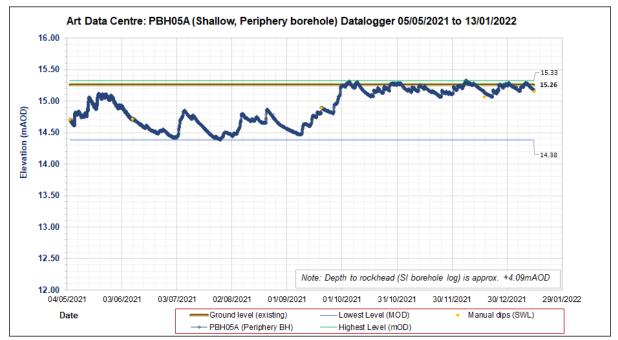


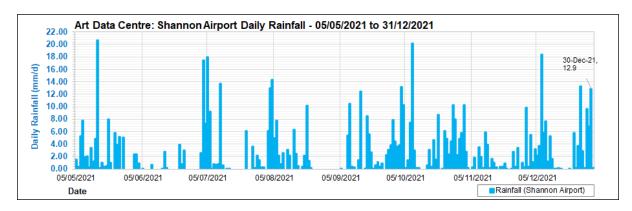


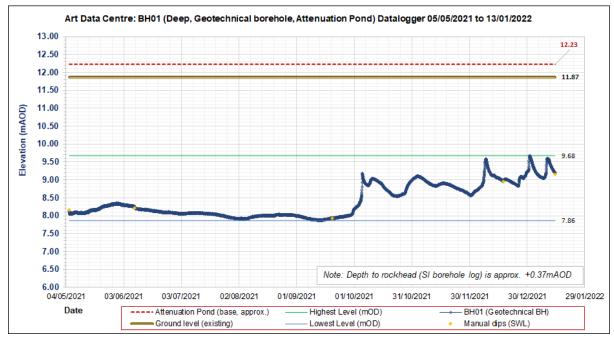


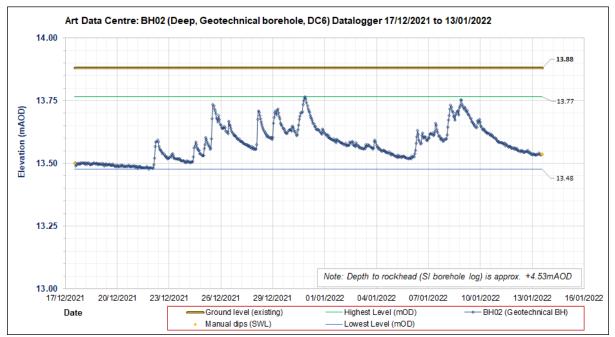


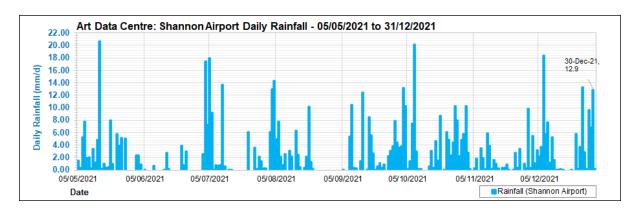


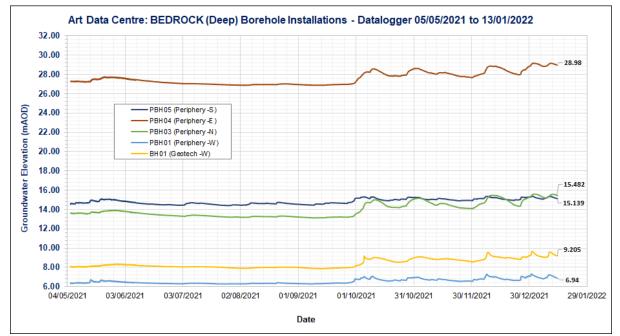


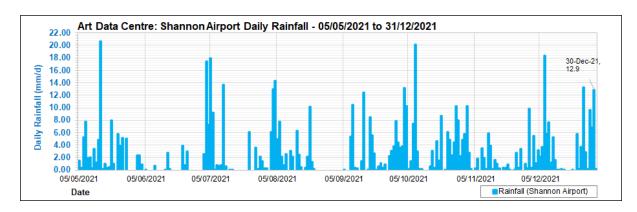


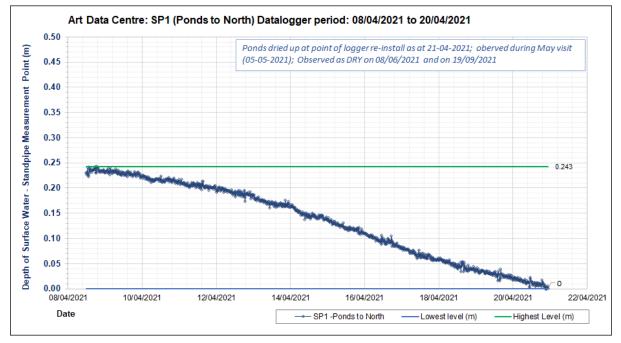


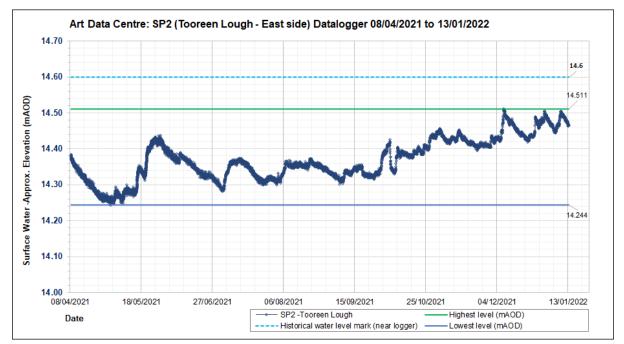












Art Data Centre – Dye Tracing Tests

Dye Tracing completed 17-12-2021

Plate 1: Aerial view of Ardnamurray Lough to north and discharge south under the R352

Plate 2: Aerial view of Fluorescein dye release (injection at 14:41hrs north of road)

Plate 3: Aerial view of Fluorescein under flow conditions, South towards swallow hole (IP1)

Plate 4: Aerial view of water features MP4 (RHS) and MP4A (LHS) after dye release

Plate 5: Aerial view of water feature MP4A (swallow hole to south of IP1) after dye release -no breakthrough was observed on the day

Plate 6: Ground view of main spring feature (MP1/ IP4) before dye release at IP1 -Estimated flow rate 5-10 litres/sec

Plate 7: Ground view of main spring feature (MP1/IP4) before dye release at IP1 -Estimated flow rate 150-200 litres/sec after excavation works at IP1; water murky

Plate 8: Ground view of main spring feature (MP1/ IP4) <u>after</u> dye release at IP1 (14:41hrs) -Estimated breakthrough at 16:37hrs at IP4 above

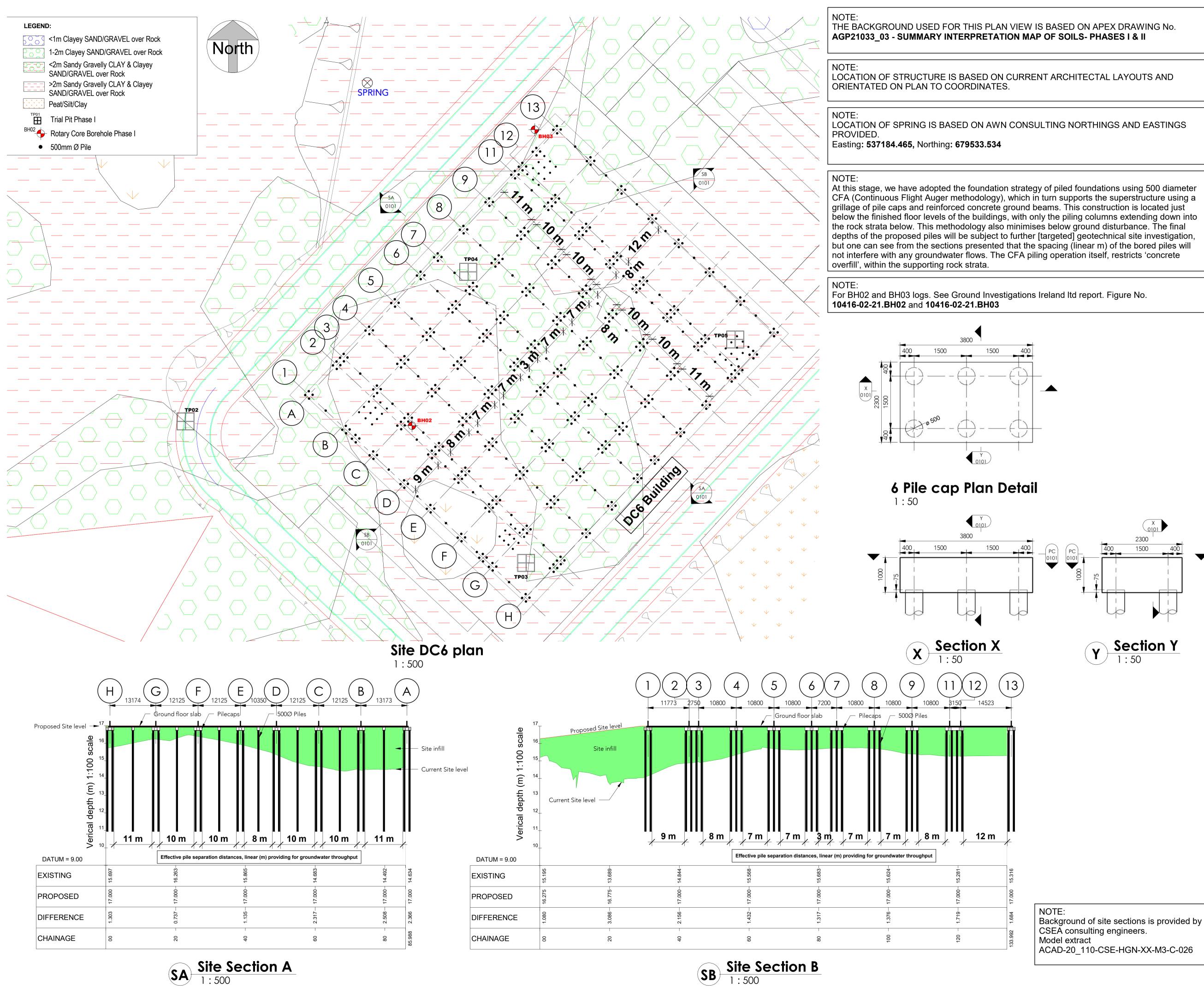
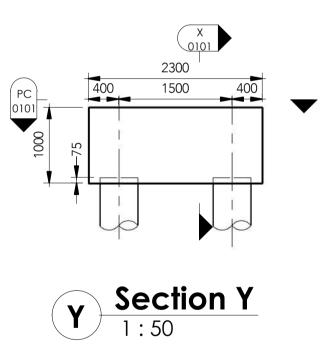

Plate 9: Ground view of main spring feature (MP1/ IP4) <u>after</u> dye release at IP1 (14:41hrs) -Dye breakthrough is obvious at IP4 above (16:42hrs), reduction in flow noted

Plate 10: Ground view of main spring feature (MP1/ IP4) <u>after</u> dye release at IP1 (14:41hrs) -Dye breakthrough is obvious at IP4 above (16:47hrs)


APPENDIX 5.5

Piling Drawings (ARC 2022)

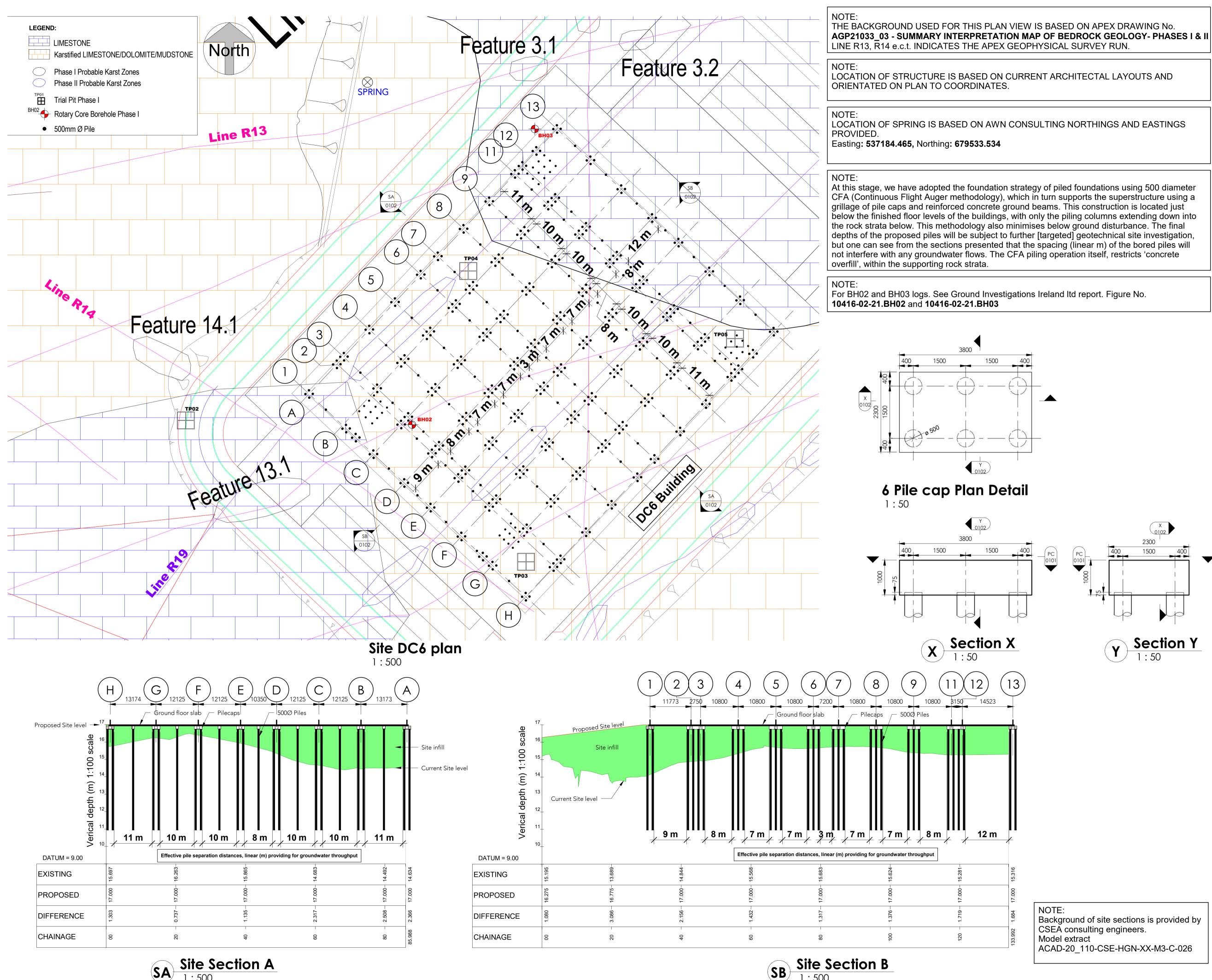
Site Section B 1:500 SB

- 1. All rights reserved. All drawings and written material appearing herein constitute origin and unpublished works of ARC:MC Limited may not be duplicated, used or disclosed w written consent. 2. All dimensions shown are in millimetres
- 3. This drawing shall be read in conjunction with all Specifications and schedules 4. All dimensions shall be checked by Contractor prior to any works commencing on site.
- 5. The contractor shall fully comply with all relevant british standards, regulations, standard codes of practice, methods of working, and good practice.
- 6. Dimensions shall not be scaled from the drawing and the contractor shall be responsible f obtaining all dimensions and levels on site for the actual setting out of the works.

CLIENT :

DRAWING No

PROJECT : Project Art, Ennis

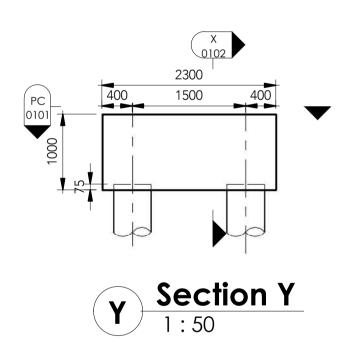

Tulla Road, Ennis, Co. Clare, Ireland

PROJECT NO : 3108 DESCRIPTION : DC6 - SUMMARY INTERPRETATION MAP OF SOILS- PH I & II SCALE : As indicated @ A1

Background of site sections is provided by CSEA consulting engineers. Model extract ACAD-20_110-CSE-HGN-XX-M3-C-026

3108-AST-ZZ-00-DR-S-0101

REVISION P01



1:500

Site Section B (SB)

- 1. All rights reserved. All drawings and written material appearing herein constitute and unpublished works of ARC:MC Limited may not be duplicated, used or disclose
- written consent. 2. All dimensions shown are in millimetres
- This drawing shall be read in conjunction with all Specifications and schedules.
 All dimensions shall be checked by Contractor prior to any works commencing on site.
 The contractor shall fully comply with all relevant british standards, regulations, standard
- codes of practice, methods of working, and good practice. 6. Dimensions shall not be scaled from the drawing and the contractor shall be responsible fo obtaining all dimensions and levels on site for the actual setting out of the works.

CLIENT :

PROJECT : Project Art, Ennis

SCALE : As indicated @ A1

PROJECT NO : 3108

Tulla Road, Ennis, Co. Clare, Ireland

DESCRIPTION : DC6 - SUMMARY INTERPRETATION

MAP OF BEDROCK GEOLOGY- PH I & II

Background of site sections is provided by CSEA consulting engineers. Model extract ACAD-20_110-CSE-HGN-XX-M3-C-026

DRAWING No 3108-AST-ZZ-00-DR-S-0102 REVISION P01

APPENDIX 6.1

CRITERIA FOR RATING THE MAGNITUDE AND SIGNIFICANCE OF IMPACTS AT EIA STAGE NATIONAL ROADS AUTHORITY (NRA-TII, 2009)

Table 1 Criteria for Rating Site Attributes – Estimation of Importance of Hydrological Attributes (NRA)

Importance	Criteria	Typical Examples
Extremely High	Attribute has a high quality or value on an international scale	River, wetland or surface water body ecosystem protected by EU legislation e.g. 'European sites' designated under the Habitats Regulations or 'Salmonid waters' designated pursuant to the European Communities (Quality of Salmonid Waters) Regulations, 1988.
Very High	Attribute has a high quality or value on a regional or national scale	River, wetland or surface water body ecosystem protected by national legislation – NHA status. Regionally important potable water source supplying >2500 homes. Quality Class A (Biotic Index Q4, Q5). Flood plain protecting more than 50 residential or commercial properties from flooding. Nationally important amenity site for wide range of leisure activities.
High	Attribute has a high quality or value on a local scale	Salmon fishery. Locally important potable water source supplying >1000 homes. Quality Class B (Biotic Index Q3-4). Flood plain protecting between 5 and 50 residential or commercial properties from flooding. Locally important amenity site for wide range of leisure activities.
Medium	Attribute has a medium quality or value on a local scale	Coarse fishery. Local potable water source supplying >50 homes. Quality Class C (Biotic Index Q3, Q2- 3). Flood plain protecting between 1 and 5 residential or commercial properties from flooding.
Low	Attribute has a low quality or value on a local scale	Locally important amenity site for small range of leisure activities. Local potable water source supplying <50 homes Quality Class D (Biotic Index Q2, Q1). Flood plain protecting 1 residential or commercial property from flooding. Amenity site used by small numbers of local people.

Table 2 Criteria for Rating Impact Significance at EIS Stage – Estimation of Magnitude of Impact on Hydrological Attribute (NRA)

Magnitude of Impact	Criteria	Typical Examples	
Large Adverse		Loss or extensive change to a waterbody or water dependent habitat. Increase in predicted peak flood level >100mm. Extensive loss of fishery. Calculated risk of serious pollution incident >2% annually. Extensive reduction in amenity value.	
	Results in impact on integrity of attribute or loss of part of attribute		
Small Adverse	Results in minor impact on integrity of attribute or loss of	Increase in predicted peak flood level >10mm. Minor loss of fishery. Calculated risk of serious pollution incident >0.5% annually. Slight reduction in amenity value.	
Negligible	Results in an impact on attribute but of insufficient magnitude to affect either use or integrity		
Minor Beneficial	Results in minor improvement	Reduction in predicted peak flood level nt>10mm. Calculated reduction in pollution risk of 50% of more where existing risk is <1% annually.	
Keneticial	improvement of attribute	Reduction in predicted peak flood level >50mm. Calculated reduction in pollution risk of 50% of more where existing risk is >1% annually.	
Major Beneficial	Results in major improvement of attribute quality	Reduction in predicted peak flood level >100mm	

Importance	Magnitude of Importance			
of Attribute	Negligible	Small Adverse	Moderate Adverse	Large Adverse
Extremely	Imperceptible	Significant	Profound	Profound
High		_		
Very High	Imperceptible	Significant/moderate	Profound/Significant	Profound
High	Imperceptible	Moderate/Slight	Significant/moderate	Profound/Significant
Medium	Imperceptible	Slight	Moderate	Significant
Low	Imperceptible	Imperceptible	Slight	Slight/Moderate

Table 3 Rating of Significant Environmental Impacts at EIS Stage (NRA)

European/National sites

Protected Sites for Nature Conservation in the Vicinity of the Proposed Development

European sites in the vicinity of the proposed development are listed below in **Table 1**, along with their qualifying/special conservation interests, reference to the most recent conservation objectives document, and their location relative to the proposed development site.

Other nationally protected sites for nature conservation in the vicinity of the proposed development are listed below in **Table 2**, along with the nature conservation interests for which they are designated, and their location relative to the proposed development site

European Site Name [Code] and its Qualifying interest(s) / Special Conservation Interest(s) (*Priority Annex I Habitats)	Location Relative to the Proposed Development Site
Special Area of Conservation (SAC)	
Special Area of Conservation (SAC) Lower River Shannon SAC [002165] 1110 Sandbanks which are slightly covered by sea water all the time 1130 Estuaries 1140 Mudflats and sandflats not covered by seawater at low tide 1150 Coastal lagoons 1160 Large shallow inlets and bays 1170 Reefs 1220 Perennial vegetation of stony banks 1230 Vegetated sea cliffs of the Atlantic and Baltic coasts 1310 Salicornia and other annuals colonising mud and sand 1330 Atlantic salt meadows (Glauco-Puccinellietalia maritimae) 1410 Mediterranean salt meadows (<i>Juncetalia maritimi</i>) 3260 Water courses of plain to montane levels with the Ranunculion fluitantis and Callitricho-Batrachion vegetation 6410 Molinia meadows on calcareous, peaty or clayey-silt-laden soils (Molinion caeruleae) 91E0 Alluvial forests with Alnus glutinosa and Fraxinus excelsior (Alno-Padion, Alnion incanae, Salicion albae) 1029 Margaritifera margaritifera (Freshwater Pearl Mussel) 1095 Petromyzon marinus (Sea Lamprey) 1096 Lampetra planeri (Brook Lamprey) 1099 Lampetra fluviatilis (River Lamprey) 1106 Salmo salar (Salmon) 1349 Tursiops truncatus (Common Bottlenose Dolphin) 1355 Lutra lutra (Otter)	<i>c.</i> 1.4km south west of the proposed development.

Table 1 European sites in the vicinity of the proposed development

European Site Name [Code] and its Qualifying interest(s) / Special Conservation Interest(s) (*Priority Annex I Habitats)	Location Relative to the Proposed Development Site
NPWS (2012) Conservation objectives for Lower River Shannon SAC [002165]. Version 1.0. Department of Culture, Heritage and the Gaeltacht. ¹	
Ballyallia Lake SAC [000014] 3150 Natural eutrophic lakes with Magnopotamion or Hydrocharition - type vegetation	<i>c</i> . 2.1km west of the proposed development.
S.I. No. 71/2018 - European Union Habitats (Ballyallia Lake Special Area of Conservation 000014) Regulations 2018	
NPWS (2017) <i>Conservation Objectives: Ballyallia Lake SAC 000014.</i> Version 1. National Parks and Wildlife Service, Department of Arts, Heritage and the Gaeltacht.	
Old Domestic Building (Keevagh) SAC [002010]	c. 4.3km south east of
1303 Lesser Horseshoe Bat(<i>Rhinolophus hipposideros</i>)	the proposed development.
S.I. No. 91/2016 - European Union Habitats (Old Domestic Building (Keevagh) Special Area of Conservation 002010) Regulations 2016.	
NPWS (2018) <i>Conservation Objectives: Old Domestic Building (Keevagh) SAC 002010.</i> Version 1. National Parks and Wildlife Service, Department of Arts, Heritage and the Gaeltacht.	
Dromore Woods and Loughs SAC [000032]	<i>c</i> . 4.4km north of the
1355 Otter (<i>Lutra lutra</i>)	proposed development.
1303 Lesser Horseshoe Bat (<i>Rhinolophus hipposideros</i>) Habitats	
3150 Natural eutrophic lakes with Magnopotamion or Hydrocharition - type vegetation	
6430 Hydrophilous tall herb fringe communities of plains and of the montane to alpine levels	
8240 Limestone pavements*	
S.I. No. 114/2020 - European Union Habitats (Dromore Woods and Loughs Special Area of Conservation 000032) Regulations 2020	
NPWS (2018) <i>Conservation Objectives</i> : Dromore Woods and Loughs SAC 000032. Version 1. National Parks and Wildlife Service, Department of Culture, Heritage and the Gaeltacht	
Old Domestic Buildings, Rylane SAC [002314]	c. 5.9km north east of
1303 Lesser Horseshoe Bat (<i>Rhinolophus hipposideros</i>)	the proposed development.
S.I. No. 175/2016 - European Union Habitats (Old Domestic Buildings, Rylane Special Area of Conservation 002314) Regulations 2016.	

¹ The versions of the conservation objectives documents referenced in this table are the most recent published versions at the time of writing

European Site Name [Code] and its Qualifying interest(s) / Special Conservation Interest(s) (*Priority Annex I Habitats)	Location Relative to the Proposed Development Site
NPWS (2018) <i>Conservation Objectives</i> : Old Domestic Buildings, Rylane SAC 002314. Version 1. National Parks and Wildlife Service, Department of Culture, Heritage and the Gaeltacht.	
Newhall and Edenvale Complex SAC [002091]	c. 6.5km south west of
1303 Lesser Horseshoe Bat (Rhinolophus hipposideros)	the proposed
8310 Caves not open to the public	development.
S.I. No. 284/2017 - European Union Habitats (Newhall and Edenvale Complex Special Area of Conservation 002091) Regulations 2017.	
NPWS (2018) <i>Conservation Objectives</i> : Newhall and Edenvale Complex SAC 002091. Version 1. National Parks and Wildlife Service, Department of Culture, Heritage and the Gaeltacht.	
Toonagh Estate SAC [002247]	c. 6.6km north west of
1303 Lesser Horseshoe Bat (<i>Rhinolophus hipposideros</i>)	the proposed development.
S.I. No. 520/2016 - European Union Habitats (Toonagh Estate Special Area of Conservation 002247) Regulations 2016.	
NPWS (2018) Conservation Objectives: Toonagh Estate SAC 002247. Version 1.	
National Parks and Wildlife Service, Department of Culture, Heritage and the	
Gaeltacht.	
Newgrove House SAC [002157]	c. 6.3km east of the
1303 Lesser Horseshoe Bat(<i>Rhinolophus hipposideros</i>)	proposed development.
S.I. No. 173/2016 - European Union Habitats (Newgrove House Special Area of Conservation 002157) Regulations 2016.	
NPWS (2018) Conservation Objectives: Newgrove House SAC 002157. Version 1.	
National Parks and Wildlife Service, Department of Culture, Heritage and the Gaeltacht.	
Poulnagordon Cave (Quin) SAC [000064]	c. 7km south east of
1303 Lesser Horseshoe Bat (Rhinolophus hipposideros)	the proposed development.
S.I. No. 90/2016 - European Union Habitats (Poulnagordon Cave (Quin) Special Area of Conservation 000064) Regulations 2016.	
NPWS (2018) <i>Conservation objectives: Poulnagordon Cave (Quin) SAC [000064].</i> Version 1. Department of Culture, Heritage and the Gaeltacht.	
Poulnadatig Cave SAC [000037]	c. 7.2km south west of
1303 Lesser Horseshoe Bat (Rhinolophus hipposideros)	the proposed
8310 Caves not open to the public	development.
S.I. No. 89/2016 - European Union Habitats (Pouladatig Cave Special Area of Conservation 000037) Regulations 2016	

European Site Name [Code] and its Qualifying interest(s) / Special Conservation Interest(s) (*Priority Annex I Habitats)	Location Relative to the Proposed Development Site
NPWS (2018) <i>Conservation Objectives: Poulnadatig Cave SAC 000037.</i> Version 1. National Parks and Wildlife Service, Department of Arts, Heritage, Regional, Rural and Gaeltacht Affairs.	
Old Farm Buildings, Ballymacrogan SAC [002245]	c. 8.1km north west of
1303 Lesser Horseshoe Bat (Rhinolophus hipposideros)	the proposed development.
S.I. No. 92/2016 - European Union Habitats (Old Farm Buildings, Ballymacrogan Special Area of Conservation 002245) Regulations 2016	
NPWS (2018) Conservation Objectives: Old Farm Buildings, Ballymacrogan SAC 002245. Version 1. National Parks and Wildlife Service, Department of Arts, Heritage, Regional, Rural and Gaeltacht Affairs.	
Moyree River System SAC [000057]	c. 8.2km north of the
1303 Lesser Horseshoe Bat (Rhinolophus hipposideros)	proposed development.
1355 Otter (<i>Lutra lutra</i>)	development.
3260 Water courses of plain to montane levels with the <i>Ranunculion fluitantis</i> and Callitricho-Batrachion vegetation	
7230 Alkaline fens	
8240 Limestone pavements*	
8310 Caves not open to the public	
S.I. No. 651/2019 - European Union Habitats (Moyree River System Special Area of Conservation 000057) Regulations 2019	
NPWS (2018) Conservation objectives for Moyree River System SAC 000057. Version 1. Department of Culture, Heritage and the Gaeltacht.	
Ballycullinan, Old Domestic Building SAC [002246]	
1303 Lesser Horseshoe Bat (Rhinolophus hipposideros)	<i>c.</i> 9.2km north west of the proposed
S.I. No. 174/2016 - European Union Habitats (Ballycullinan, Old Domestic Building Special Area of Conservation 002246) Regulations 2016	development.
NPWS (2018) Conservation Objectives: Ballycullinan, Old Domestic Building SAC 002246. Version 1. National Parks and Wildlife Service, Department of Arts, Heritage and the Gaeltacht.	
East Burren Complex SAC [001926]	c. 9.3km north of the
1355 Otter (<i>Lutra lutra</i>)	proposed development.
1065 Marsh Fritillary (Euphydryas aurinia)	
1303 Lesser Horseshoe Bat 7.9(Rhinolophus hipposideros)	
3140 Hard oligo-mesotrophic waters with benthic vegetation of <i>Chara</i> spp.	
3180 Turloughs*	
3260 Water courses of plain to montane levels with the <i>Ranunculion fluitantis</i> and Callitricho-Batrachion vegetation	
4060 Alpine and Boreal heaths	

European Site Name [Code] and its Qualifying interest(s) / Special Conservation Interest(s) (*Priority Annex I Habitats)	Location Relative to the Proposed Development Site
6130 Calaminarian grasslands of the Violetalia calaminariae	
6210 Semi-natural dry grasslands and scrubland facies on calcareous substrates (Festuco-Brometalia) (* important orchid sites)	
6510 Lowland hay meadows (Alopecurus pratensis, Sanguisorba officinalis)	
7210 Calcareous fens with <i>Cladium mariscus</i> and species of the <i>Caricion davallianae</i> *	
7220 Petrifying springs with tufa formation (Cratoneurion)*	
7230 Alkaline fens	
8240 Limestone pavements*	
8310 Caves not open to the public	
91E0 Alluvial forests with <i>Alnus glutinosa and Fraxinus excelsior</i> (Alno-Padion, <i>Alnion incanae, Salicion albae</i>)*	
NPWS (2022) <i>Conservation Objectives: East Burren Complex SAC 001926.</i> Generic Version 1. National Parks and Wildlife Service, Department of Culture, Heritage and the Gaeltacht.	
Ballycullinan Lake SAC [000016]	c. 9.4km north west of
7210 Calcareous fens with Cladium mariscus and species of the Caricion davallianae*	the proposed development.
S.I. No. 518/2016 - European Union Habitats (Ballycullinan Lake Special Area of Conservation 000016) Regulations 2016	
NPWS (2018) Conservation Objectives: Ballycullinan Lake SAC 000016. Version	
1. National Parks and Wildlife Service, Department of Culture, Heritage and the	
Gaeltacht.	
Ballyogan Lough SAC [000019]	<i>c.</i> 9.7km north of the
7210 Calcareous fens with Cladium mariscus and species of the Caricion davallianae*	proposed development.
8240 Limestone pavements	
S.I. No. 547/2021 European Union Habitats (Ballyogan Lough Special Area Of Conservation 000019) Regulations 2021	
NPWS (2018) Conservation Objectives: Ballyogan Lough SAC 000019. Version 1.	
National Parks and Wildlife Service, Department of Culture, Heritage and the	
Gaeltacht.	
Lough Gash Turlough SAC [000051]	c. 11.1km south of the
3180 Turloughs*	proposed
3270 Rivers with muddy banks with <i>Chenopodion rubri</i> p.p. and Bidention p.p. vegetation	development
S.I. No. 72/2018 - European Union Habitats (Lough Gash Turlough Special Area of Conservation 000051) Regulations 2018	
NPWS (2017) Conservation Objectives: Lough Gash Turlough SAC 000051.	
Version 1. National Parks and Wildlife Service, Department of Culture, Heritage and the Gaeltacht.	

European Site Name [Code] and its Qualifying interest(s) / Special Conservation Interest(s) (*Priority Annex I Habitats)	Location Relative to the Proposed Development Site
Knockanira House SAC [002318] 1303 Lesser Horseshoe Bat (Rhinolophus hipposideros)	<i>c.</i> 11.8km south west of the proposed development.
S.I. No. 521/2016 - European Union Habitats (Knockanira House Special Area of Conservation 002318) Regulations 2016	
NPWS (2018) <i>Conservation Objectives: Knockanira House SAC 002318</i> . Version 1. National Parks and Wildlife Service, Department of Culture, Heritage and the Gaeltacht.	
Kilkishen House SAC [002319]	c. 12.7km south east
1303 Lesser Horseshoe Bat (Rhinolophus hipposideros)	of the proposed development site.
S.I. No. 177/2016 - European Union Habitats (Kilkishen House Special Area of Conservation 002319) Regulations 2016.	
NPWS (2018) <i>Conservation Objectives: Kilkishen House SAC 002319</i> . Version 1. National Parks and Wildlife Service, Department of Culture, Heritage and the Gaeltacht.	
Special Protection Area (SPA)	
Balliallia Lough SPA [004041]	c. 2.6km north west of
A052 Teal(Anas crecca)	the proposed
A125 Coot(Fulica atra)	development site.
A053 Mallard(Anas platyrhynchos)	
A050 Wigeon(Anas penelope)	
A156 Black-tailed Godwit(Limosa limosa)	
A056 Shoveler(Anas clypeata)	
A051 Gadwall(Anas strepera)	
A999 Wetland and Waterbirds	
S.I. No. 58/2010 - European Communities (Conservation of Wild Birds (Ballyallia Lough Special Protection Area 004041)) Regulations 2010	
NPWS (2022) <i>Conservation objectives for Ballyallia Lough SPA [004041]</i> . Generic Version 9.0. Department of Housing, Local Government and Heritage.	
Slieve Aughty Mountains SPA [004168]	c. 4.4km north east of
A098 Merlin(Falco columbarius)	the proposed development site.
A082 Hen Harrier(Circus cyaneus)	development site.
S.I. No. 83/2012 - European Communities (Conservation of Wild Birds (Slieve Aughty Mountains Special Protection Area 004168)) Regulations 2012.	
NPWS (2022) Conservation objectives for Slieve Aughty Mountains SPA [004168]. Generic Version 9.0. Department of Housing, Local Government and Heritage	
River Shannon and River Fergus Estuaries SPA [004077]	c. 5.1km south west of
A179 Black-headed Gull(Chroicocephalus ridibundus)	the proposed
A141 Grey Plover(Pluvialis squatarola)	development.
A038 Whooper Swan(Cygnus cygnus)	
A140 Golden Plover(<i>Pluvialis apricaria</i>)	

European Site Name [Code] and its Qualifying interest(s) / Special Conservation Interest(s) (*Priority Annex I Habitats)	Location Relative to the Proposed Development Site
A048 Shelduck(Tadorna tadorna)	
A157 Bar-tailed Godwit(Limosa lapponica)	
A046 Light-bellied Brent Goose(Branta bernicla hrota)	
A137 Ringed Plover(Charadrius hiaticula)	
A156 Black-tailed Godwit(Limosa limosa)	
A160 Curlew(Numenius arquata)	
A164 Greenshank(Tringa nebularia)	
A050 Wigeon(Anas penelope)	
A162 Redshank(Tringa totanus)	
A142 Lapwing(Vanellus vanellus)	
A017 Cormorant(Phalacrocorax carbo)	
A056 Shoveler(Anas clypeata)	
A052 Teal(Anas crecca)	
A143 Knot(Calidris canutus)	
A062 Scaup(Aythya marila)	
A054 Pintail <i>(Anas acuta)</i>	
A149 Dunlin(Calidris alpina)	
A999 Wetland and Waterbirds	
S.I. No. 329/2019 - European Union Conservation Of Wild Birds (River Shannon And River Fergus Estuaries Special Protection Area 004077) Regulations 2019 NPWS (2012) Conservation Objectives: River Shannon and River Fergus Estuaries SPA 004077. Version 1.0.	
Corofin Wetlands SPA [004220]	c. 10.7km north west
A156 Black-tailed Godwit(Limosa limosa)	of the proposed
A052 Teal(Anas crecca)	development.
A038 Whooper Swan(Cygnus cygnus)	
A050 Wigeon(Anas penelope)	
A004 Little Grebe(Tachybaptus ruficollis)	
A999 Wetland and Waterbirds	
S.I. No. 117/2012 - European Communities (Conservation of Wild Birds (Corofin Wetlands Special Protection Area 004220)) Regulations 2012.	
NPWS (2022) Conservation objectives for Corofin Wetlands SPA [004220]. Generic Version 9.0. Department of Housing, Local Government and Heritage	

Table 2 Nationally protected sites in the vicinity of the proposed development

Designated Site Name [Code] and its nature conservation features	Location Relative to the Proposed Development Site
Natural Heritage Area (NHA)	
Oysterman's Marsh NHA [002439] This site contains a significant area of lowland blanket bog, a globally scarce resource.	c. 5.2km north east of the proposed development

Designated Site Name [Code] and its nature conservation features	Location Relative to the Proposed Development Site
Maghera Mountain Bogs NHA [002442] Consists of a diversity of habitats such as, heath, flush, scrub and upland blanket bog which is the dominant habitat.	c. 11.1km north east of the proposed development
proposed Natural Heritage Area (pNHA)	
Newpark House (Ennis) pNHA [000061] Diversity and naturalness with a range of old native tree species such as <i>Quercus</i> sp. and <i>Tilia</i> sp.	c. 1.5km south west of the proposed development.
Ballyallia Lake pNHA [000014] Wintering bird species and wetland habitats, see also Ballyallia Lake SAC and Ballyallia Lough SPA.	c. 2.1km north west of the proposed development.
Durra Castle pNHA [000033] Its significance lies in the fact that it is one of the few nursery sites at the eastern edge of the distribution of the Lesser Horseshoe Bat (Rhinolophus hipposideros) in Ireland. There is also a suitable foraging habitat in close proximity to the site	c. 3.4km north east of the proposed development
Inchicronan Lough pNHA [000038] A wide range of habitats can be found around the lake and include an area of cut- over bog to the north, Ash (<i>Fraxinus excelsior</i>) and Hazel (<i>Corylus avellana</i>) woodland along the eastern shore, a complex mosaic of wet grassland, dense scrub and marsh at the southern end and a habitat of significant interest on the western side of the lake due to the presence of the Limerick-Sligo railway line.	c. 4.1km north east of the proposed development
Old Domestic Building (Keevagh) [002010] See description of Old Domestic Building (Keevagh) SAC.	c. 4.2km south east of the proposed development
Dromore Woods and Loughs pNHA [000032] See description of Dromore Woods and Loughs SAC	c. 4.3km north west of the proposed development
Lough Cleggan pNHA [001331] This site has a diverse range of habitats and plant species which include the Common Reed (<i>Phragmites australis</i>), Bottle Sedge (<i>Carex rostrata</i>), Yellow Irish (<i>Iris pseudacorus</i>), Hazel (<i>Corylus avellana</i>), Willow (<i>Salix</i> spp.), Ash (<i>Fraxinus</i> <i>excelsior</i>), Rushes (<i>Juncus</i> spp.), Marshmarigold (<i>Caltha palustris</i>), and Meadowsweet (<i>Filipendula ulmaria</i>). The lake is of local importance for wintering waterfowl. Breeding bird species include the Tufted Duck (<i>Aythya fuligula</i>) and Coot (<i>Fulica atra</i>).	c. 4.9km north west of the proposed development
Fergus Estuary And Inner Shannon, North Shore pNHA [002048] See description of River Shannon and River Fergus Estuaries SPA	c. 5.1km south west of the proposed development
Cahircalla Wood pNHA [001001] It is a great example of relatively intact mostly native woodland. The presence of scrub, wet woodland and limestone pavement provides for habitat diversity at this location.	c. 6.1km south west of the proposed development
Newhall and Edenvale Complex pNHA [002091] See description of Newhall and Edenvale Complex SAC	c. 6.6km south west of the proposed development

Designated Site Name [Code] and its nature conservation features	Location Relative to the Proposed Development Site
Pouladatig Cave pNHA [000037]	c. 7.2km south west
See description of Pouladatig Cave SAC	of the proposed development
Poulnagordon Cave (Quin) pNHA [000064]	c. 7.0km south east
See description of Poulnagordon Cave (Quin) SAC	of the proposed development
Ballycullinan Lake pNHA [000016]	c. 9.4km north west
See description of Ballycullinan Lake SAC	of the proposed development
Dromoland Lough pNHA [001008]	c. 8.3km south east
Designated for the presence of a diverse range of marsh species which include	of the proposed
Bottle Sedge (<i>Carex rostrata</i>), Slender Sedge (<i>C. lasiocarpa</i>), Tufted-sedge (<i>C. slender</i>), Slender Sedge (<i>S. slender</i>), S	development
<i>elata</i>), Lesser Tussock-sedge (C. <i>diandra</i>), Greater Pond-sedge (C. <i>riparia</i>), Fibrous Tussock-sedge (C. <i>appropinquata</i>), Long-stalked Yellow-sedge (C. <i>lepidocarpa</i>), Reed Canary grass (<i>Phalaris arundinacea</i>), Grass-of-parnassus (<i>Parnassia palustris</i>) and Eyebright (<i>Euphrasia scottica</i>).	
Moyree River System pNHA [000057]	c. 8.3km north of the
See description of Moyree System SAC	proposed development
East Burren Complex pNHA [001926]	c. 9.2km north west
See description of East Burren Complex SAC	of the proposed development
Ballyogan Lough pNHA [000019]	c. 9.7km north of the
See description of Ballyogan Lough SAC	proposed development
Ballycar Lough pNHA [000015]	c. 9.9km south east
This is a small calcareous lake. It has a considerable ecological value which stems from the transitory state of the fen vegetation on the northern limb. At this site, bog vegetation such as the Bog-myrtle (Myrica gale) and the Purple Moor-grass (Molinia caerulea) has invaded a fen community so that conditions are finely balanced between the two.	of the proposed development
Fin Lough (Clare) pNHA [001010]	c. 10.4km south east
The beetle, <i>Panagaeus cruxmajor</i> has beeen recorded twice at this location. This is one of a small number of stations for this insect in Ireland.	of the proposed development
Lough Cullaunyheeda pNHA [001017]	c. 10.5km south east
This site contains nationally important numbers of Tufted Duck (<i>Aythya fuligula</i>) and Coot (<i>Fulica atra</i>)	of the proposed development
Rosroe Lough pNHA [002054]	c. 11.1km south east
Designated for the presence of Holly (<i>Ilex aquifolium</i>) -dominated scrub and associated grassland. This location contains a finely struck balance between the requirements of moisture and acid-loving species and those requiring a more demanding dry, alkaline regime.	of the proposed development
Lough Gash Turlough pNHA [000051]	c. 11.2km south of
See description of Lough Gash Turlough SAC	the proposed
	development

NBDC records/BCI records

Desktop records of protected, rare, or other notable fauna species are listed below in **Table 1**. In relation to amphibian, reptile and mammal species those which are protected under the Wildlife Acts, the Habitats Directive and/or are listed as threatened (Vulnerable to Critically Endangered) on the relevant national Red Lists are included. In the case of bird species, only those species listed in Annex I of the Birds Directive or on the Birds of Conservation Concern in Ireland (BoCCI) Red List are included in the table below. For invertebrate species, those which are listed as threatened (Vulnerable to Critically Endangered) on the relevant national Red List are included in the table below.

Table 1 Records of protected, red-listed or notable fauna from the desktop study in the vicinity of the
study area

Common Name/ Scientific Name	Legal Status ²	Red List Status ³	Source
Amphibians			
Common frog Rana temporaria	HD_V, WA	Least concern	NBDC online database record
Mammals (Terrestrial)			
Badger Meles meles	WA	Least concern	NBDC online database record
Otter Lutra lutra	HD_II & IV, WA	Least concern	NBDC online database record
Hedgehog Erinaceus europaeus	WA	Least concern	NBDC online database record
Irish hare Lepus timidus subsp. hibernicus	HD_V, WA	Least concern	NBDC online database record

² HD_II/IV/V = Habitats Directive Annexes II/IV/V; WA = Wildlife Acts; BD_I/II/III = Birds Directive Annex I/II/III; OSPAR = Convention for the protection of the marine environment of the North-east Atlantic 1992

³ Mammal Red-list from Marnell, F., Kingston, N. & Looney, D. (2009) *Ireland Red List No. 3: Terrestrial Mammals* and Marnell, F., Looney, D. & Lawton, C. (2019) *Ireland Red List No. 12: Terrestrial Mammals*.

Birds from Colhoun, K. & Cummins, S. (2013) Birds of Conservation Concern in Ireland 2014-2019. Irish Birds 9:523-544.

Amphibians, reptiles and fish from King, J.L., Marnell, F., Kingston, N., Rosell, R., Boylan, P., Caffrey, J.M., Fitzpatrick, Ú., Gargan, P.G., Kelly, F.L., O'Grady, M.F., Poole, R., Roche, W.K. & Cassidy, D. (2011) Ireland Red List No. 5: Amphibians, Reptiles & Freshwater Fish.

Non-Marine Molluscs from Byrne, A., Moorkens, E.A., Anderson, R., Killeen, I.J. & Regan, E.C. (2009) *Ireland Red List No. 2 – Non-Marine Molluscs*.

Butterflies from Regan, E.C., Nelson, B., Aldwell, B., Bertrand, C., Bond, K., Harding, J., Nash, D., Nixon, D., & Wilson, C.J. (2010) Ireland Red List No. 4 – Butterflies.

Moths from Allen, D., O'Donnell, M., Nelson, B., Tyner, A., Bond, K.G.M., Bryant, T., Crory, A., Mellon, C., O'Boyle, J., O'Donnell, E., Rolston, T., Sheppard, R., Strickland, P., Fitzpatrick, U., & Regan, E. (2016) *Ireland Red List No. 9: Macro-moths* (*Lepidoptera*).

Damselflies and dragonflies from Nelson, B., Ronayne, C. & Thompson, R. (2011) Ireland Red List No.6: Damselflies & Dragonflies (Odonata).

Water beetles from Foster, G. N., Nelson, B. H. & O Connor, Á. (2009) Ireland Red List No. 1 - Water beetles.

Common Name/ Scientific Name	Legal Status ²	Red List Status ³	Source
Pine marten Martes martes	HD_V, WA	Least concern	NBDC online database record
Red squirrel Sciurus vulgaris	WA	Least concern	NBDC online database record
Stoat Mustela erminea	WA	Least concern	NBDC online database record
Pygmy shrew Sorex minutus	WA	Least concern	NBDC online database record
Lesser horseshoe bat Rhinolophus hipposideros	HD_II & IV, WA	Least concern	BCI database record ⁴ NBDC online database record
Natterer's bat Myotis nattereri	HD_IV, WA	Least concern	BCI database record
Brown long-eared bat Plecotus auritus	HD_IV, WA	Least concern	BCI database record NBDC online database record
Daubenton's bat Myotis daubentonii	HD_IV, WA	Least concern	BCI database record
Leisler's bat Nyctalus leisleri	HD_IV, WA	Least concern	BCI database record NBDC online database record
Soprano pipistrelle Pipistrellus pygmaeus	HD_IV, WA	Least concern	BCI database record NBDC online database record
Common pipistrelle Pipistrellus pipistrellus	HD_IV, WA	Least concern	BCI database record NBDC online database record
Birds			
Barn owl <i>Tyto alba</i>	WA	Red	NBDC online database record
Black-headed gull Larus ridibundus	WA	Red	NBDC online database record
Blackcap Sylvia atricapilla	WA	Amber	NBDC online database record
Black-tailed godwit Limosa limosa	BD_I, WA	Red	NBDC online database record
Brambling Fringilla montifringilla	WA	Amber	NBDC online database record
Coot Fulica atra	BD_II (I), BD_III (II), WA	Amber	NBDC online database record

⁴ Bat Conservation Ireland (BCI) database record accessed in October 2014

Common Name/ Scientific Name	Legal Status ²	Red List Status ³	Source
Goldeneye Bucephala clangula	BD_II (II), WA	Red	NBDC online database record
Kestrel Falco tinnunculus	BD_I, WA	Red	NBDC online database record
Kingfisher Alcedo atthis	BD_I, WA	Amber	NBDC online database record
Linnet Carduelis cannabina	WA	Amber	NBDC online database record
Moorhen Gallinula chloropus	WA	Green	NBDC online database record
Pochard Aythya ferina	BD_II (I), III (II), WA	Red	NBDC online database record
Redshank Tringa totanus	WA	Red	NBDC online database record
Common sandpiper Actitis hypoleucos	WA	Amber	NBDC online database record
Shelduck Tadorna tadorna	WA	Red	NBDC online database record
Common snipe Gallinago galllinago	BD_II (I), BD_III (III), WA	Red	NBDC online database record
Starling Sturnus vulgais	WA	Amber	NBDC online database record
Swift Apus apus	WA	Red	NBDC online database record
Corn crake Crex crex	BD_I, WA	Red	NBDC online database record
Dunlin Calidris alpina	BD_I	Red	NBDC online database record
Curlew Numenius arquata	BD_II (II), WA	Red	NBDC online database record
Sparrowhawk Accipter nisus	WA	Green	NBDC online database record
Teal Anas crecca	BD_II (I), BD_III (II), WA	Amber	NBDC online database record
Tree sparrow Passer montanus	WA	Amber	NBDC online database record
Wigeon Anas penelope	BD_II (I), III (II), WA	Amber	NBDC online database record

Common Name/ Scientific Name	Legal Status ²	Red List Status ³	Source
Woodcock Scolopax rusticola	BD_II (I), III (III), WA	Red	NBDC online database record
Golden plover Pluvialis apricaria	BD_I, II (II), III (III), WA	Red	NBDC online database record
Greenfinch Carduelis chloris	BD_II (I), WA	Amber	NBDC online database record
Gadwall Anas strepera	WA	Amber	NBDC online database record
Garganey Anas querquedula	BD_II (I), WA	Amber	NBDC online database record
Goldcrest Regulus regulus	WA	Amber	NBDC online database record
Great black-backed gull Larus marinus	WA	Green	NBDC online database record
Cormorant Phalacrocorax carbo	WA	Amber	NBDC online database record
Great creseted grebe Podiceps cristatus	WA	Amber	NBDC online database record
Greater scaup Aythya marila	BD_II (II), BD_III (III), WA	Red	NBDC online database record
Greenland white-fronted goose Anser albifrons flavirostris	BD_I, II (II), III (III), WA	Amber	NBDC online database record
Heron Ardea cinerea	WA	Green	NBDC online database record
Grey wagtail Motacilla cinerea	WA	Red	NBDC online database record
Hen harrier Circus cyaneus	BD_I, WA	Amber	NBDC online database record
Herring gull Larus argentatus	WA	Amber	NBDC online database record
House martin Delichon urbicum	WA	Amber	NBDC online database record
House sparrow Passer domesticus	WA	Amber	NBDC online database record
Jack snipe Lymnocryptes minimus	BDII_(I), BDIII_III, WA	Green	NBDC online database record
Lesser black-backed gull Larus fuscus	WA	Amber	NBDC online database record

Common Name/ Scientific Name	Legal Status ²	Red List Status ³	Source
Little egret Egretta garzetta	BD_I, WA	Green	NBDC online database record
Little grebe Tachybaptus ruficollis	WA	Green	NBDC online database record
Long-eared owl Asio otus	WA	Green	NBDC online database record
Mallard Anas platyrhynchos	BD_II (I), BD_III (I), WA	Amber	NBDC online database record
Meadow pipit Anthus pratensis	WA	Red	NBDC online database record
Merlin Falco columbarius	BD_I, WA	Amber	NBDC online database record
Common gull Larus canus	WA	Amber	NBDC online database record
Mistle thrush Turdus viscivorus	WA	Green	NBDC online database record
Mute swan Cygnus olor	WA	Amber	NBDC online database record
Lapwing Vanellus vanellus	BD_II (II), WA	Red	NBDC online database record
Pintail Anas acuta	BD_II (I), III (II), WA	Amber	NBDC online database record
Shoveler Anas clypeata	BD_II (I), III (III), WA	Red	NBDC online database record
Wheatear Oenanthe oenanthe	WA	Amber	NBDC online database record
Peregrine Falco peregrinus	BD_I, WA	Green	NBDC online database record
Redwing Turdus iliacus	WA	Red	NBDC online database record
Ringed plover Charadrius hiaticula	WA	Amber	NBDC online database record
Sand martin Riparia riparia	WA	Amber	NBDC online database record
Sky lark Alauda arvensis	WA	Amber	NBDC online database record
Spotted flycatcher Muscicapa striata	WA	Amber	NBDC online database record

Common Name/ Scientific Name	Legal Status ²	Red List Status ³	Source
Tufted duck Aythya fuligula	BD_II (I), III (II), WA	Amber	NBDC online database record
Bewick's swan Cygnus columbianus	WA	Red	NBDC online database record
Twite Carduelis flavirostris	WA	Red	NBDC online database record
Whinchat Saxicola rubetra	WA	Red	NBDC online database record
Whooper swan Cygnus cygnus	BD_I, WA	Amber	NBDC online database record
Willow warber Phylloscopus trochilus	WA	Amber	NBDC online database record
Yellowhammer Emberiza citrinella	WA	Red	NBDC online database record
Invertebrates			
Marsh fritillary butterfly Euphydryas aurinia	HD_II	Vulnerable	NBDC online database record
Willughby's Leaf-Cutter Bee Megachile (Delomegachile) willughbiella	none	Endangered	NBDC online database record
Long-toed water beetles Dryops (Dryops) similaris	none	Near threatened	NBDC online database record
Small heath Coenonymphaa pamphilus	none	Near threatened	NBDC online database record
Wall Lasiommata megera	none	Endangered	NBDC online database record
Wood white Leptidea sinapis	none	Near threatened	NBDC online database record

Flora Species List By Habitat (Habitats of Local Importance (Higher value) or more)

Dry calcareous and neutral gra	assland (GS1)	Reed and large sedge sw	vamps (FS1)
Scientific Name	Common Name	Scientific Name	Common Name
Agrostris stonolifera	Creeping Bent	Phragmites australis	Common reed
Alopecurus pratensis	Meadow foxtail	Cladium mariscus+	Great fen-sedge
Anthoxanthum odoratum	Sweet vernal grass	Carex paniculate*	Greater tussock- sedge

Dry calcareous and neutral grassland (GS1)		Reed and large sedge swamps (FS1)		
Bellis perennis	Daisy	Menyanthes trifoliata	Bog bean	
Briza media*	Quaking grass	Equisetum fluviatile⁺	Water Horsetail	
Cirsium arvense	Creeping thistle	Calliergonella cuspidata	Pointed Spear-moss	
Cynosurus cristatus	crested dog's-tail	Carex rostrata⁺	Bottle Sedge	
Dactylis glomerata	Cock's foot	Juncus articulates*	Jointed Rush	
Daucus carota⁺	Wild carrot	Agrostis stolonifera	Creeping bent	
Festuca rubra	Red fescue	Typha latifolia	Bulrush	
Galium verum⁺	Lady's Bedstraw	Epilobium palustre	Marsh Willowherb	
Heracleum sphondylium	Common hogweed	Calliergon cordifolium	Heart-leaved Spear- moss	
Holcus lanatus	Yorkshire fog	Mentha aquatica	Water Mint	
Hypochaeris radicata	Cat's-ear	Lemna minor	Common duckweed	
Jacobaea vulgaris	Ragwort	Apium nodiflorum	Fool's-water-cress	
Leontodon saxatilis⁺		Nuphar lutea	Yellow water-lily	
Leucanthemum vulgare	Oxeye daisy	Lythrum salicaria⁺	Purple-loosestrife	
Linum catharticum*	Fairy flax	Galium palustre ⁺	Common Marsh- bedstraw	
Ranunculus repens	Creeping buttercup	Berula erecta	Lesser Water- parsnip	
Taraxacum officinale agg.	Dandelion	Nasturtium officinale agg.	Watercress	
Trifolium pratense	Red clover	Myosotis scorpioides	Water Forget-me- not	
Trifolium repens	White clover	Eupatorium cannabinum	Hemp-agrimony	
Veronica chamaedrys	Germander speedwell	Rumex obtusifolius	broad-leaved dock	
Vicia sativa	Common vetch	Persicaria amphibia	Longroot smartweed	
		Salix cinerea	Grey sallow	
		Myrica gale	Bog-myrtle	

* high quality indicator species of 'semi-natural dry grasslands and scrubland facies on calcareous substrates (*Festuco-Brometea*) (*important orchid sites) (6210)' or 'Calcareous fens with *Cladium mariscus* and species of the *Caricion davallianae* (*7210)'

*positive indicator species of 'semi-natural dry grasslands and scrubland facies on calcareous substrates (*Festuco-Brometea*) (*important orchid sites) (6210)' or 'Calcareous fens with *Cladium mariscus* and species of the *Caricion davallianae* (*7210)'

Wet grassland (GS4)		Rich fen and flush (PF1)		
Scientific Name	Common Name	Scientific Name	Common Name	
Juncus effusus⁺	Soft rush	Typha latifolia	Bulrush	
Juncus bulbosus	Bulbous Rush	Sparganium erectum	branched bur-reed	
Mentha aquatica	Watermint	Schoenus nigricans	black bog-rush	
Potentilla anserina	Silverweed	Carex flacca	Blue sedge	
Ranunculus acris	Meadow buttercup	Carex paniculata	Greater tussock-sedge	
Ranunculus repens	Creeping buttercup	Carex nigra	Black sedge	
Cardamine pratensis	Cuckoo flower	Calliergonella cuspidata	Pointed Spear-moss	
Galium palustre	Common march bedstraw	Galium uliginosum	Fen bedstraw	
Calliergonella cuspidata	Pointed Spear-moss	Mentha aquatica	Water mint	
Trifolium repens	White Clover	Lychnis flox-cuculi	Ragged robin	
Cirsium palustre	Marsh Thistle			
Filipendula ulmaria	Meadowsweet			
Holcus lanatus	Yorkshire Fog			
Epilobium palustre	Marsh Willowherb			

Wet grassland (GS4)		Rich fen and flush (PF1)
Cerastium fontanum	mouse-ear chickweed	
Alopecurus geniculatus	Marsh Foxtail	
Ranunculus flammula	Lesser Spearwort	
Lolium perenne	perennial ryegrass	
Calliergon cordifolium	Heart-leaved Spear-Moss	
Agrostis stolonifera	Creeping Bent	
Carex ovalis	Oval Sedge	
Molinea caerulea ⁺	Purple moor grass	
Lotus pedunculatus+	Birdsfoot Trefoil	
Lythrym salicaria⁺	Purple loosestrife	
Iris pseudacorus	Yellow iris	
Cardamine flexuosa	Wavy Bitter-cress	
Hypericum tetrapterum	St John's-wort	
Anthoxanthum odoratum	sweet vernal grass	
Cynosurus cristatus	crested dog's-tail	
Juncus articulates+	Jointed Rush	
Plantago lanceolata	Ribwort plantain	
Dactylorhiza fuchsia*	Common spotted orchid	

* high quality indicator species of '*Molinia* meadows on calcareous, peaty or clayey-silt-laden soils (*Molinion caeruleae*) (6410)' or 'Alkaline fens (7230)'

⁺positive indicator species of '*Molinia* meadows on calcareous, peaty or clayey-silt-laden soils (*Molinion caeruleae*) (6410)' or 'Alkaline fens (7230)'

Riparian Woodland (WN5)		Willow-alder-ash wood	and (WN6)
Scientific Name Common Name		Scientific Name	Common Name
Salix cinerea subsp. oleifolia	rusty sallow	Salix cinearea	Grey willow
Salix x multinervis	Hybrid willow	Salix capraea	Goat willow
Juncus effusus	Soft rush	Salix aurita	Eared willow
Carex paniculata	Greater tussock-sedge	Alnus glutinosa⁺	Alder
Filipendula ulmaria⁺	Meadowsweet	Corylus avellana	Hazel
Epilobium parviflorum	Hoary Willowherb	Phalaris arundinacea	canary reed-grass
Angelica sylvestris⁺	Wild Angelica	Filipendula ulmaria	Meadowsweet
Equisetum fluviatile	Water horsetail	Circaea lutetiana	enchanter's-nightshade
Comarum palustre	Marsh cinquefoil	Angelica sylvestris	wild Angelica
Rhytidiadelphus squarrosus	Springy Turf-moss	Iris pseudacorus	Yellow iris
Galium palustre	Common Marsh-bedstraw	Carex paniculata	greater tussock-sedge
Menyanthes trifoliata	Bog bean	Acer pseudoplatanus	sycamore
Myrica gale	Bog-myrtle	Fraxinus excelsior⁺	Ash
Rubus fruticosus agg.	Bramble		
Vicia sativa	Common vetch		
Potentilla erecta	Tormentil		
Hedera helix	lvy		
Lonicera periclymenum	Honeysuckle		
Stellaria palustris⁺	Marsh stitchwort		

* high quality indicator species of Alluvial forests with Alnus glutinosa and Fraxinus excelsior (Alno-Pandion, Alnion incanae, Salicion albae) (*91E0)'

*positive indicator species of 'Alluvial forests with Alnus glutinosa and Fraxinus excelsior (Alno-Pandion, Alnion incanae, Salicion albae) (*91E0)'

Depositing/Lowland rivers (FW2)		Marsh (GM1)	
Scientific Name	Common Name	Scientific Name	Common Name
Filipendula ulmaria	Meadowsweet	Filipendula ulmaria	Meadowsweet
Typha latifolia	Bulrush	Lythrum salicaria	Purple loosestrife
Mentha aquatica	Watermint	Mentha aquatica	Watermint

Depositing/Lowland rivers (FW2)		Marsh (GM1)	
Apium nodiflorum	Fool's-water-cress	Epilobium hirsutum	Hairy willowherb
Phragmites australis	common reed	Apium nodiflorum	Fool's-water-cress
		Phragmites australis	Common reed
		Salix sp.	Willow species

Mesotrophic Lake (FL4)		Oak-ash-hazel woodland (WN2)		
Scientific Name	Common Name	Scientific Name	Common Name	
Nuphar alba	white water lily	Fraxinus excelsior	Ash	
Nasturtium officinale	Watercress	Salix cinerea	Grey willow	
Apium nodiflorum	Fool's-water-cress	Acer pseudoplatanus	Sycamore	
Potamogeton natans	broad-leaved	Hedera helix	lvy	
	pondweed			
Lemna minor	Common duckweed	Rubus fruticosus	Bramble	
		agg.		
Ranunculus flammula	Lesser Spearwort	Fagus sylvatica	Beech	
Nuphar lutea	Yellow water lily	Crataegus	Hawthorn	
		топодупа		
Callitriche spp	water-starwort	Dryopteris dilatata	broad buckler-fern	
Typha latifolia	bulrush	Dryopteris affinis	Male Fern	
Equisetum spp.	Horsetail	Juncus effusus	Soft rush	
Mentha aquatica	Water mint	Polytrichum	Common Haircup	
		commune		
Menyanthes trifoliata	Bog-bean	Oxalis acetosa	Wood sorrel	
Bidens cernua	Nodding beggars-ticks	Kindbergia	Common Feather-moss	
		praelonga		
Myosotis scorpoides	Water Forget-me-not	Corylus avellana	Hazel	
, ,	6	, Thamnobryum	Fox-tail Feather-moss	
		alopecurum		
		Neckera complanata	flat Neckera	
		Geranium	Hert robert	
		robertianum		
		Arum maculatum	Cuckoo pint	
		Eurhynchium	Common striated feather-	
		striatum	moss	
		Polypodium sp.	Wall fern	
		Asplenium	Hart's Tongue Fern	
		scolopendrium		
		llex aquifolium	Holly	
		Alnus glutinosa	Common Alder	
		Lonicera	Honeysuckle	
		periclymenum		
		Prunus spinosa	Blackthorn	
		Hypnum sp.	Hypnum sp. moss	
		Frullania dilatata	Dilated Scalewort	
		Rhamnus cathartica	buckthorn	
		Salix cinerea subsp.	Grey willow sp.	
		oleifolia		
		Urtica dioica	Nettle	
		Circaea lutetiana	Enchanter's-nightshade	
		Polystichum	Soft Shield Fern	
		setiferum		
		Glechoma hederacea	Ground ivy	

Immature woodland (WS2)		Other artificial lakes and ponds (FL8)	
Scientific Name	Common Name	Scientific Name	Common Name
Alnus glutinosa	Alder	Lemna minor	Common duckweed
Salix cinerea	Grey willow	Potamagon natans	Broad-leaved pondweed

Vibernum opulus	Guelder rose	Typha latifolia	Bulrush
Quercus sp.	Oak	Alisma plantago- aquatica	common water-plantain
Betula pubescens	Downy birch	Sparganium erectum	Branched Bur-reed
Fagus sylvatica	Beech	Phragmites australis	common reed
Sorbus aucuparia	Rowan	Achillea millefolium	Yarrow
Corylus avellana	Hazel	Equisetum arvense	Horsetail
Rubus fruticosus	Bramble	Salix sp.	Willow
Ulex europeaus	Gorse	Charales spp.	Stonewort species
Pteridium aquilinum	Bracken	Juncus inflexus	Hard rush
		Lotus corniculatus	Bird's-foot-trefoil

Hedgerows (WL1)		Treelines (WL2)	Treelines (WL2)	
Scientific Name	Common Name	Scientific Name	Common Name	
Crataegus monogyna	Hawthorn	Ulmus procera	Elm	
Fraxinus excelsior	Ash	Aesculus hippocastanum	Horse chesnut	
llex aquifolium	Holly	Acer pseudoplatanus	Sycamore	
Acer pseudoplatanus.	Sycamore	Fraxinus excelsior	Ash	
Sambucus nigra	Elder	Quercus robur	Oak	
Rosa canina	Dog rose	Hesperocyparis macrocarpa	Monterey cypress	
Hedera helix	lvy	Chamaecyparis Iawsoniana	Lawson cypress	
Corylus avellana	Hazel	Betula pendula	Silver birch	
Rubus fruticosus	Bramble	Acer platanoides	Norway maple	
Galium aparine	Cleaver			
Geranium robertianum	Herb Robert			
Arum maculatum	Cuckoo pint			
Asplenium scolopendrium	Hart's Tongue Fern			
Anthriscus sylvestris	Cow Parsley			

Building inspection results

Page	21	of	89
------	----	----	----

Building ID no.	Location	Rating	Details of building and surrounding habitat	Features present
BB 1A	R 37583 79425	Low	Cattle shed with concrete block and corrugated metal walls and corrugated metal roof. Open on side of shed. Surrounding landscape - pasture fields to the north, east and west, and treelines to the south.	1 – Gaps between blocks where mortar has come away on all sides of shed. Unable to be endoscoped due to height of features and wall in front.

Building ID no.	Location	Rating	Details of building and surrounding habitat	Features present
				2 – Gaps under corrugated metal on sides on building where metal meets concrete blocks, crevices under this metal sheeting.

Building ID no.	Location	Rating	Details of building and surrounding habitat	Features present
BB 1B	R 37573 79421	Low	Adjacent to 1A. Concrete external walls with corrugated roof. Not accessible inside due to safety concerns. Creamery machinery within. Same surrounding habitat as 1A.	 1 - Gaps at corners where roof meets external walls, on all corners of building. Image: The second seco

Building ID no.	Location	Rating	Details of building and surrounding habitat	Features present
BB 2	R 37515 79417	Moderate	Large residential house, brick walls with rendering, slate roof, two stories. Surrounded by treelines and hedgerows, and Torreen Lough closeby. Most likely more features present near roof but due to height of house difficult to assess fully.	1 – Gaps under slates in various areas of roof, potential crevices under here with room for small number of bats, and under lead flashing by chimney

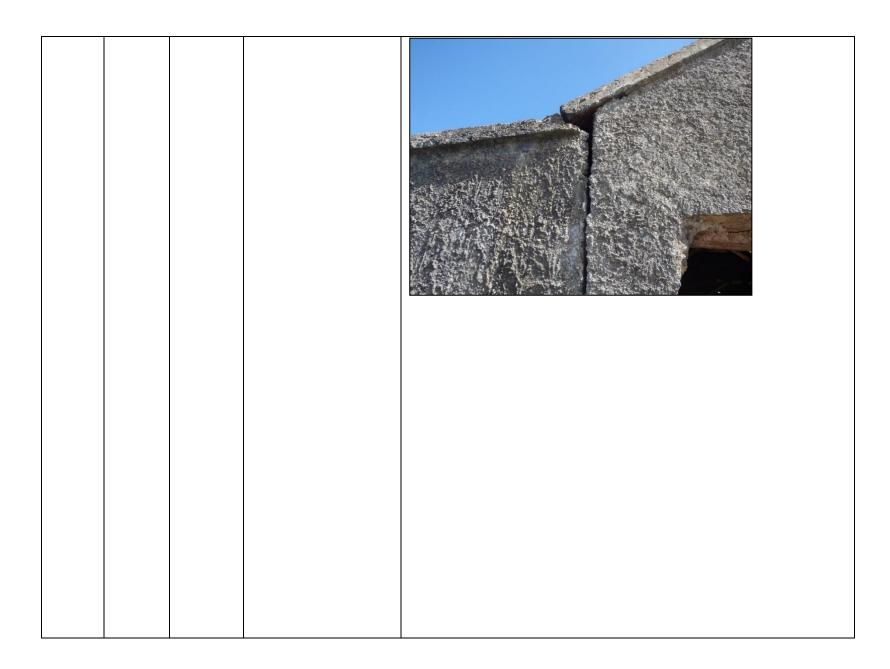
Building ID no.	Location	Rating	Details of building and surrounding habitat	Features present
				2 – Possible gaps where roof joins wall on western side of house

Building ID no.	Location	Rating	Details of building and surrounding habitat	Features present
BB 3	R 37480 79432	High	Residential house, bungalow, slate roof with stone walls.	1 – Potential gap under slate on edge of roof near apex where mortar has come away, droppings evident underneath feature.

Building ID no.	Location	Rating	Details of building and surrounding habitat	Features present
				2 – Gap under roof mortar and lead flashing where roof meets chimney, droppings underneath. Similar feature on other side of house (but no droppings present on other side)

Building ID no.	Location	Rating	Details of building and surrounding habitat	Features present

1


Building ID no.	Location	Rating	Details of building and surrounding habitat	Features present
				3 – Gaps under roof slates across whole roof, especially by velux windows

BB 4A	R 37437	Low	Corrugated cow shed	1 – Crevices along both ends of building where corrugated iron meets
DD 4A		LOW		
	79475		with part concrete	wall.
			walls, and wooden	
			beams within. Pasture	and the set
			fields bordered by	
			hedgerows/treelines.	
			Adjacent to meadow	
			with Tooreen Lough	
				The second se
				n pener han andre a decent here even a decent the second of the second second second second second second second
				2 – Potential gaps crevices along roof where wooden beams joins
				corrugated sheeting. Potentially only suitable for temporary night roosts.

|--|

Building ID no.	Location	Rating	Details of building and surrounding habitat	Features present
				 3 – gaps along lead flashing at top of roof Image: Second se

Building ID no.	Location	Rating	Details of building and surrounding habitat	Features present
				5 – Window going into extra part of shed with fabric roof material inside, not fully accessible

Building ID no.	Location	Rating	Details of building and surrounding habitat	Features present
BB 4C	R 37461 79471	Negligible	Tall barn building, very open with wooden beams, no walls on two	No features visible, suitable for foraging only

Building ID no.	Location	Rating	Details of building and surrounding habitat	Features present
			sides, very exposed. Corrugated roof and sides	
BB 4D	R 37469 79460	Low	Small building with stone walls, partly collapsed roof on one side and very open, small room at end with some potential	1 – Dense ivy on each gable end of building

Building ID no.	Location	Rating	Details of building and surrounding habitat	Features present
				2 – Open doorway into small end room, ceiling inside partially collapsed, turf roof and wooden beams. Not fully accessible due to health and safety. No evidence noted

Building ID no.	Location	Rating	Details of building and surrounding habitat	Features present
BB 5A	R 37628 79863	Moderate	Brick house with flat slated roof. Wooden sheds in garden, treelines and hedgerows adjacent to house, surrounding habitat pasture field	1 – Gaps where soffit board meets roof, potentially going quite far back on NW corner, NE and southern corner of house

Building ID no.	Location	Rating	Details of building and surrounding habitat	Features present
				2 – Gaps along flashing of roof, some parts replaced recently.

Building ID no.	Location	Rating	Details of building and surrounding habitat	Features present
				 3 – Gaps on edge of roof where slates have come up slightly leaving gap exposed on W side of house, also gaps present along flashing of chimney Image: State of the state

Building ID no.	Location	Rating	Details of building and surrounding habitat	Features present
BB 5B	R 37572 79903	Low	Wood shed close to BB 5A, exposed on two sides, concrete block walls and corrugated metal roof. Wooden beams inside. Thick ivy on western end of shed. Surrounded by pasture fields, very exposed. Swallows nesting in here	1 – Thick ivy on western end, has started to grow within shed

Building ID no.	Location	Rating	Details of building and surrounding habitat	Features present
				2 – gaps where beams meet roof within shed

Building ID no.	Location	Rating	Details of building and surrounding habitat	Features present
BB 6A,	R 37422	Low	Three cattle barn	6A – Very open shed with no doors, potential for foraging within barn,
6B, 6C	79737		sheds, all with	and possibly some small crevices along roof where beams join the roof.
			corrugated steel roofs	
			and concrete block	
			walls. Very exposed	
			buildings, mostly open	
			with very little features.	
			Suitable for foraging	
			but little roosting	
			features, any present	
			would only house 1-2	
			bats. Hedgerows and	
			treelines nearby, with	

Building ID no.	Location	Rating	Details of building and surrounding habitat	Features present
			pasture fields surrounding.	<image/>

Building ID no.	Location	Rating	Details of building and surrounding habitat	Features present
				6B – Collection of small sheds with limited suitability, very exposed and open. Cattle within part of shed when surveying so could not enter all of shed. Suitable for foraging and small single roosts potentially

Building ID no.	Location	Rating	Details of building and surrounding habitat	Features present
				6C – Roof fallen down in places, similar to other barns, very exposed and open. Wooden beams inside with some fabric hanging from these, slightly more potential than other sheds

Building ID no.	Location	Rating	Details of building and surrounding habitat	Features present
				<image/>

Building ID no.	Location	Rating	Details of building and surrounding habitat	Features present
BB 7	R 37489 79848	Moderate	Residential unoccupied house. Very run down, concrete walls with slate roof. Dense ivy at northern gable end where stone shed used to be. Well connected to hedgerows and treelines nearby.	 1 - Gable end of house where shed/outhouse collapsed, lots of gaps along wall, not fully accessible to inspect. Dense ivy on top half of wall, with gaps along the roof edge that potentially go into further crevices in house. Image: Image: Imag

Building ID no.	Location	Rating	Details of building and surrounding habitat	Features present
				3 – Gaps along edged of roof where missing tiles, potentially going into attic space. Gaps below times along soffit edge also

Building ID no.	Location	Rating	Details of building and surrounding habitat	Features present
BB 8	R 37579 79375	Moderate	Modern residential building, stone walls with flat slated roof. Garage building behind house. Hedgerow surrounding building (Leylandii spp.), and main road along southern boundary.	1 – Gap where roof flashing meets chimney wall

Building ID no.	Location	Rating	Details of building and surrounding habitat	Features present
				2 – Crevices above window in conservatory like building, where stone wall meets soffit board, gap going upwards into it all along above window, droppings on window below.

Building ID no.	Location	Rating	Details of building and surrounding habitat	Features present
				3 – Gap going upwards into porch feature

Building ID no.	Location	Rating	Details of building and surrounding habitat	Features present
BB 9	R 37544 79359	Moderate	Modern residential building, with stone walls and flat roof slates. Large slated shed/building (Edward Casey kitchens workshop) beside house. Hedgerows and treelines along boundary, road along southern boundary.	1 – Gap on above porch feature where stone facing meets wall, potential droppings spotted but not possible to reach.

Building ID no.	Location	Rating	Details of building and surrounding habitat	Features present
				2 – Slated shed building with potential crevices at corners between guttering and soffit boards.

Building ID no.	Location	Rating	Details of building and surrounding habitat	Features present
				<image/>

Appendix 7.5

Details of roost emergence/re-entry surveys at buildings and structures

Building ID	Roost Potential	Building description	No. and type of surveys	Roost(s) identified	No. of roosts	Comments
BB 1A	Low	Partially open cattle shed with concrete block walls and corrugated iron roofing.	 2x internal and external inspection 1x dusk emergence 1x dawn re- entry 	Yes	One – Soprano pipistrelle	Optimal conditions experienced for both activity surveys. One soprano pipistrelle re-entered side of barn on western aspect. Moderate levels of activity recorded on both surveys, with soprano pipistrelle, common pipistelle, Leisler's bat and brown long-eared bat recorded during surveys foraging and commuting in the area. Foraging within barns and along nearby hedgerows and treelines was also noted.
BB 1B	Low	Adjacent to 1A, creamery barn with concrete walls and corrugated roofing.	 2x external inspection 1x dusk emergence 1x dawn re- entry 	No	N/a	Surveyed at same time as 1A. No roosts identified in this building. Similar species identified as 1A foraging and commuting in the area.
BB 2	Moderate	Two-story residential house with rendered brick walls,	 2x external inspection 1x dusk emergence 	Yes	Four – Soprano pipistrelle	Two roosts recorded during dawn survey (one individual soprano pipistrelle from both). Two additional roosts during second survey, all P. pyg and 1-2 individuals. Significant activity along treelines and hedgerows around house including; soprano pipistrelle, common pipistrelle, brown long-eared, <i>Myotis</i> spp., and leisler's bat.

Building ID	Roost Potential	Building description	No. and type of surveys	Roost(s) identified	No. of roosts	Comments
		and slated roof.	• 1x dawn re- entry			
BB 3	High	Residential house with slate roof and stone walls.	 2x external inspection 2x dusk emergence 1x dawn reentry 	Yes	Five – Soprano pipistrelle	Droppings identified on building during external survey. Five soprano pipistrelle roost points identified across building. 30 soprano pipistrelle bats emerged and re-entered from one roost on first and second survey. Four other roosts small roosts with low numbers observed. Soprano pipistrelle, common pipistrelle, leisler's bat, brown long-eared identified foraging and commuting during surveys, particularly along hedgerows and treelines leading to Lough Tooreen, and hedgerows adjacent to house.
BB 4A	Low	Partially open cow shed with corrugated roof and sides, and concrete block walls.	 2x internal inspection 2x external inspection 1x dusk emergence 	No	N/A	No roosts identified during surveys, or evidence noted during building inspections. High level of activity from soprano pipistrelle, common pipistrelle, <i>Myotis</i> spp., and Leislers bat. Bat species were noted to be foraging within the barn, and commuting along hedgerows leading to Tooreen Lough.
BB 4B	Low	Adjacent to BB 4B, stone walled cattle barn with corrugated roof.	 2x internal inspection 2x external inspection 1x dusk emergence 	No	N/A	Similar results as BB 4A as survey was undertaken at the same time as these. No roosts identified or evidence of bats noted during building inspections.

Building ID	Roost Potential	Building description	No. and type of surveys	Roost(s) identified	No. of roosts	Comments
BB 4C	Negligable	Adjacent to BB 4A and 4B. Large, open, two- sided corrugated cattle shed.	 2x internal inspection 2x external inspection 1x dusk emergence 	No	N/A	Similar results as BB 4A and 4B as survey was undertaken at the same time as these. No roosts identified or evidence of bats noted during building inspections. Bats identified foraging within barn during survey.
BB 4D	Low	Small disused building, stone walls with partially collapsed roof.	 2x internal inspection 2x external inspection 1x dusk emergence 	No	N/A	Similar results as BB 4A, 4B, and 4C as survey was undertaken at the same time as these. No roosts identified or evidence of bats noted during building inspections.
BB 5A	Moderate	Residential house, brick walls with flat slated roof.	 1x external inspection 2x dawn reentry 1x dusk emergence 	Yes	Four – Soprano pipistrelle and common pipistrelle	Three roosts identified on house, two were small soprano pipistrelle roosts (one and two individuals), and the third being a common pipistrelle roost of one individual. Moderate foraging activity along the treelined laneway adjacent to house, and commuting observed along nearby hedgerows. Common pipistrelle, soprano pipistrelle, Leisler's bat and brown long-eared bat were observed during activity surveys.
BB 5B	Moderate	Woodshed with concrete block walls	2x external inspection	Yes	One – Brown Iong-eared bat	Two brown long-eared bats identified roosting in this shed, observed flying inside barn, and landing on wooden beams and walls. Emerged from ivy that has overgrown within shed. Droppings identified on

Building description	No. and type of surveys	Roost(s) identified	No. of roosts	Comments
and corrugated roof. Partially open.	 2x internal inspection 2x dawn re- entry 1x dusk emergence 			wood piles, no other roosts or evidence noted. Soprano pipistrelle also observed foraging within shed but did not emerge from here.
Large partially open cattle shed, mainly	 2x internal inspection 2x external inspection 	No	N/A	No roosts were identified during the activity survey or evidence of bats was noted during building inspections. Common pipistrelle, soprano pipistrelle, and Leisler's bat were observed during the survey, with pipistrelles foraging within the barn.

		roof. Partially open.	 2x dawn re- entry 1x dusk emergence 			
BB 6A	Low	Large partially open cattle shed, mainly comprised of corrugated iron material.	 2x internal inspection 2x external inspection 1x dawn re- entry 	No	N/A	No roosts were identified during the activity survey or evidence of bats was noted during building inspections. Common pipistrelle, soprano pipistrelle, and Leisler's bat were observed during the survey, with pipistrelles foraging within the barn.
BB 6B	Low	Collection of small cattle sheds with corrugated sides and roof, and concrete walls.	 2x external inspection 1x dawn reentry 	No	N/A	No roosts were identified during the activity survey or evidence of bats noted during external inspection. Similar species as identified at BB 6A, low activity observed here.

Building Roost

Potential

ID

Building ID	Roost Potential	Building description	No. and type of surveys	Roost(s) identified	No. of roosts	Comments
		Adjacent to BB 6A.				
BB 6C	Low	Corrugated iron barn, partially open at one end. Adjacent to BB 6A and 6B.	 2x internal inspection 2x external inspection 1x dawn re- entry 	Yes	One – Leisler's bat	No roosts were identified during the activity survey. During building inspections in 2022, a single Leisler's bat roost was identified in a small section of this shed, between a crack in the exterior wall. Similar species foraging during activity surveys as identified at BB 6A and 6B.
BB 7	Moderate	Residential unoccupied house with stone walls and slate roof. Partially collapsed stone shed that adjoins property.	 2x external inspection 1x internal inspection 1x dawn re- entry 2x dusk emergence 	No	N/A	No roosts identified during activity surveys, however was sub-optimal weather conditions during one of the dusk surveys. Very little bat activity recorded during surveys, with soprano pipistrelle, common pipistrelle and Leisler's bat identified commuting through the area.
BB 8	Moderate	Modern residential house, stone walls	 2x external inspection 1x dawn 	Yes	Three – Soprano pipistrelle	Three roosts identified, two on the house, and one on the garage. Roost on the house with 13 soprano pipistrelles, second roost with a single soprano pipistrelle roost. Roost within garage with single P. pyg. Droppings were identified under the roost with 13 bats. Moderate activity level with soprano pipistrelle, common pipistrelle, Leisler's

Building ID	Roost Potential	Building description	No. and type of surveys	Roost(s) identified	No. of roosts	Comments
		and flat slated roof.	• 1x dusk			bat, and brown long-eared bat observed foraging and commuting along hedgerows and treeline surrounding the house.
BB 9	Moderate	Modern residential building with stone walls and flat slate roof. Large shed adjacent to building (workshop) with stone slated walls and roof.	 2x external inspection 1x dawn 1x dusk 	Yes	One – Soprano pipistrelle	One roost identified during last survey within porch of house. 7 – 8 individuals emerged from one roost location.

APPENDIX 7.6

Transect Survey Results

Date	Survey Type	Bat species recorded	Comments
Visit 1 – Und	lertaken on the 8 th July 20	20	
July	Dusk (Transect)	Soprano pipistrelle bat Common pipistrelle bat Leisler' s bat Myotis species	 The most commonly recorded species during this walked transect was the soprano pipistrelle bat, followed by the common pipistrelle bat. Both species were found in the majority of the areas walked within the site, with high levels of activity recorded within the vicinity of Toureen Lough, Toureen Laneway and the woodland located within the north-western section of the proposed development site. Mature hedgerows perpendicular to Toureen Laneway also had relatively high levels of activity of both these species. Leisler's bat was identified mainly near Toureen Lough, and along the hedgerows off Toureen Laneway. It was also recorded in lower numbers in areas within the north eastern section of the proposed development site. A single <i>Myotis</i> species bat call was identified along Toureen Laneway close to BB 6A, 6B and 6C in the northern section of the proposed development site).
Visit 2 – Und	lertaken on the 28 th – 29 th	July 2020	
July	Dusk - Dawn (Transect)	Soprano pipistrelle bat Common pipistrelle bat Leisler' s bat	The most commonly recorded species during this full night walked transect of the entire site was the soprano pipistrelle bat, followed by the common pipistrelle. Areas of high activity of both species included; Toureen Lough, woodland in north-eastern section of the proposed development, Toureen Laneway, and hedgerows/treelines bordering fields in the eastern section of the proposed

Date	Survey Type	Bat species recorded	Comments
		Unidentified Pipistrellus species	development site. Activity levels of common pipistrelles was also high in the north-eastern area adjacent to the woodshed and residential house.
		Myotis species Lesser horseshoe bat Brown long-eared bat	Leisler's bat species were recorded mainly around Toureen Lough, with high levels of activity identified there. Activity was also identified in the south-western and north-eastern sections of the proposed deelopment site, in lower numbers in areas near the woodland in the western section of the proposed development site, and along Toureen Laneway. <i>Myotis</i> species was recorded in localised areas in the north of the proposed developmetn site, and along Toureen Laneway.
			A single lesser horseshoe bat call was identified in the southern section of the proposed development site, adjacent to cattle sheds in a pasture field. This was the only lesser horseshoe bat call identified during transect surveys.
			High levels of activity of brown long-eared bat was recorded along Toureen Laneway, very close to the woodshed in the north (where a roost was confirmed, <i>i.e.</i> in BB 5B, and in lower numbers adjacent to the woodland in the north-west section of the proposed development site.
Visit 3 – Underta	ken on the 18 th August 2	2020	
August	Dusk (Transect)	Soprano pipistrelle bat Common pipistrelle bat	The most commonly recorded species during this walked transect was the soprano pipistrelle. High levels of activity were recorded along Toureen Laneway, Toureen Lough and the hedgerow located parallel to the R125 along the
		Unidentified Pipistrellus species	southern boundary of the proposed development site. Soprano pipistrelle was also recorded in the woodland in the north-western of the proposed development site, and around BB 6a, 6B and 6C in the north.
		Leisler's bat Myotis species	Common pipistrelle was the second most commonly recorded species and was identified in similar areas to that of soprano pipistrelle.

Date	Survey Type	Bat species recorded	Comments
		Brown long-eared bat	Leisler's bat was recorded in pockets across the site, mainly along Toureen Laneway, and briefly in the north adjacent to the barns, and within the woodland in the north-western section of the proposed development site. Myotis species and brown long-eared were mostly recorded along Toureen Laneway, the latter of which had a higher number of associated calls.

Appendix 7.7

Examples of Valuing Important Ecological Features

International Importance:

- 'European Site' including Special Area of Conservation (SAC), Site of Community Importance (SCI), Special Protection Area (SPA) or proposed Special Area of Conservation.
- Proposed Special Protection Area (pSPA).
- Site that fulfils the criteria for designation as a 'European Site' (see Annex III of the Habitats Directive, as amended).
- Features essential to maintaining the coherence of the Natura 2000 Network.⁵
- Site containing 'best examples' of the habitat types listed in Annex I of the Habitats Directive.
- Resident or regularly occurring populations (assessed to be important at the national level)⁶ of the following:
 - Species of bird, listed in Annex I and/or referred to in Article 4(2) of the Birds Directive; and/or
 - Species of animal and plants listed in Annex II and/or IV of the Habitats Directive.
- Ramsar Site (Convention on Wetlands of International Importance Especially Waterfowl Habitat 1971).
- World Heritage Site (Convention for the Protection of World Cultural & Natural Heritage, 1972).
- Biosphere Reserve (UNESCO Man & The Biosphere Programme).
- Site hosting significant species populations under the Bonn Convention (Convention on the Conservation of Migratory Species of Wild Animals, 1979).
- Site hosting significant populations under the Berne Convention (Convention on the Conservation of European Wildlife and Natural Habitats, 1979).
- Biogenetic Reserve under the Council of Europe.
- European Diploma Site under the Council of Europe.
- Salmonid water designated pursuant to the European Communities (Quality of Salmonid Waters) Regulations, 1988, (S.I. No. 1988).⁷

National Importance:

• Site designated or proposed as a Natural Heritage Area (NHA).

⁵ See Articles 3 and 10 of the Habitats Directive

⁶ It is suggested that, in general, 1% of the national population of such species qualifies as an internationally important population. However, a smaller population may qualify as internationally important where the population forms a critical part of a wider population or the species is at a critical phase of its life cycle.

⁷ Note that such waters are designated based on these waters' capabilities of supporting salmon (Salmo salar), trout (Salmo trutta), char (Salvelinus) and whitefish (Coregonus)

- Statutory Nature Reserve.
- Refuge for Fauna and Flora protected under the Wildlife Acts.
- National Park.
- Undesignated site fulfilling the criteria for designation as a Natural Heritage Area (NHA); Statutory Nature Reserve; Refuge for Fauna and Flora protected under the Wildlife Act; and/or a National Park.
- Resident or regularly occurring populations (assessed to be important at the national level)⁸ of the following:
 - Species protected under the Wildlife Acts; and/or
 - Species listed on the relevant Red Data list.
- Site containing 'viable areas'⁹ of the habitat types listed in Annex I of the Habitats Directive

County Importance:

- Area of Special Amenity.¹⁰
- Area subject to a Tree Preservation Order.
- Area of High Amenity, or equivalent, designated under the County Development Plan.
- Resident or regularly occurring populations (assessed to be important at the County level)¹¹ of
- the following:
 - Species of bird, listed in Annex I and/or referred to in Article 4(2) of the Birds Directive;
 - Species of animal and plants listed in Annex II and/or IV of the Habitats Directive;
 - Species protected under the Wildlife Acts; and/or
 - Species listed on the relevant Red Data list.
- Site containing area or areas of the habitat types listed in Annex I of the Habitats Directive that do not fulfil the criteria for valuation as of International or National importance.
- County important populations of species, or viable areas of semi-natural habitats or natural heritage features identified in the National or Local Biodiversity Action Plan, if this has been prepared.
- Sites containing semi-natural habitat types with high biodiversity in a county context and a high degree of naturalness, or populations of species that are uncommon within the county.

⁸ It is suggested that, in general, 1% of the national population of such species qualifies as a nationally important population. However, a smaller population may qualify as nationally important where the population forms a critical part of a wider population or the species is at a critical phase of its life cycle.

⁹ A 'viable area' is defined as an area of a habitat that, given the particular characteristics of that habitat, was of a sufficient size and shape, such that its integrity (in terms of species composition, and ecological processes and function) would be maintained in the face of stochastic change (for example, as a result of climatic variation).

¹⁰ It should be noted that whilst areas such as Areas of Special Amenity, areas subject to a Tree Preservation Order and Areas of High Amenity are often designated on the basis of their ecological value, they may also be designated for other reasons, such as their amenity or recreational value. Therefore, it should not be automatically assumed that such sites are of County importance from an ecological perspective.

¹¹ It is suggested that, in general, 1% of the County population of such species qualifies as a County important population. However, a smaller population may qualify as County important where the population forms a critical part of a wider population or the species is at a critical phase of its life cycle.

• Sites containing habitats and species that are rare or are undergoing a decline in quality or extent at a national level.

Local Importance (higher value):

- Locally important populations of priority species or habitats or natural heritage features identified in the Local BAP, if this has been prepared;
- Resident or regularly occurring populations (assessed to be important at the Local level)¹² of the following:
 - Species of bird, listed in Annex I and/or referred to in Article 4(2) of the Birds Directive;
 - Species of animal and plants listed in Annex II and/or IV of the Habitats Directive;
 - Species protected under the Wildlife Acts; and/or
 - Species listed on the relevant Red Data list.
- Sites containing semi-natural habitat types with high biodiversity in a local context and a high degree of naturalness, or populations of species that are uncommon in the locality;
- Sites or features containing common or lower value habitats, including naturalised species that are nevertheless essential in maintaining links and ecological corridors between features of higher ecological value.

Local Importance (lower value):

- Sites containing small areas of semi-natural habitat that are of some local importance for wildlife;
- Sites or features containing non-native species that are of some importance in maintaining habitat links.

¹² It is suggested that, in general, 1% of the local population of such species qualifies as a locally important population. However, a smaller population may qualify as locally important where the population forms a critical part of a wider population or the species is at a critical phase of its life cycle.

Appendix 7.8

Bat survey results and analysis from 2018

1. METHODOLOGY

1.1 BAT BUILDING INSPECTIONS

External and/or internal inspections of buildings located within the proposed development site were undertaken on the 7th June 2018 to determine whether or not roosting bats were present. In addition to the actual presence of bats, bat activity may also be detected by the following signs:

- Bat droppings (these will accumulate under an established roost or under access points);
- Insect remains (under feeding perches);
- Oil (from fur) and urine stains;
- Scratch marks; or,
- Bat corpses.

1.2 TREE INSPECTIONS

A preliminary inspection of trees on site was carried out during an initial multidisciplinary site visit on 7th June 2018, with the aim of assessing their suitability to support roosting bats. The trees were assessed based on the presence of features commonly used by bats. Examples of such features include:

- Natural holes;
- Woodpecker holes;
- Cracks/splits in major limbs;
- Loose bark; and,
- Hollows/cavities.

1.3 WALKED BAT ACTIVITY TRANSECT

Post-dusk bat activity surveys comprising walked transects were undertaken within the subject lands on the 7th August 2018 and 16th August 2018. These transect routes are illustrated on Figure 1 of this report.

The transect carried out on the 7th August 2018 (*i.e.* visit 1) covered as much of the subject lands as possible with an emphasis on surveying linear vegetation features and field boundaries.

The second transect visit carried out on the 16th August 2018 aimed to replicate a similar route, however as two surveyors were on-site at this time, areas not previously accessed were covered more thoroughly. Dates, locations, timings, weather and other details of these manual bat activity surveys are outlined within Table 1 below.

Overall, the weather conditions were considered to be optimal for bat activity surveys. These surveys were undertaken at the appropriate time of year for recording bat activity.

Dusk surveys commenced 15 minutes before sunset and lasted for approximately two hours afterwards. The activity surveys were completed using both direct observation and handheld ultrasound detectors (*i.e.* Elekon BatLogger M and Pettersson D240X). The aims of these surveys were:

- to determine the level of bat activity within or directly adjacent to the survey area;
- to identify what bat species may be present and what landscape features they may be utilising; and,
- to determine the potential use of built structures on-site by roosting bat species.

The second visit also included a post-dusk emergence survey at an existing private dwelling and four farm structures (located in close proximity to ITM grid reference 537405 679488) within the subject lands. No bats were observed exiting any of these buildings.

Data generated from the bat activity surveys was analysed using both Elekon BatExplorer software and BatSound analysis software, which differentiate bat species by their ultrasonic echolocation calls. Calls were manually identified against species descriptions provided within *British Bat Calls: A Guide to Species Identification* (Russ, 2012).

Date	SURVEY TYPE	DETECTOR USED	Sunset time	SURVEY TIMES	Weather and Temperature
Visit 1					
07/08/2018	Dusk (Transect)	Elekon BatLogger M	21:18	21:00-22:50	Mostly dry except for heavy rain for approximately 30 minutes of survey, light winds, temperature 14°C
Visit 2					
16/08/2018	Dusk (Transect)	Elekon BatLogger M Pettersson D240X	21:00	20:45-23:00	Dry and calm, with temperatures ranging from 16- 13°C

Table 1 Manual bat activity survey information

1.4 AUTOMATED STATIC BAT DETECTOR SURVEY

The manual walked transects were supplemented by automated static bat detector surveys , which were deployed from the 6th July 2018 to 31st October at 14 different locations within the subject lands.

Weather conditions during September and October 2018 were unseasonably mild and as such, it was considered that all these deployments were undertaken in suitable conditions for recording bat activity. These locations were chosen with an emphasis on areas identified as being potentially suitable for roosting, commuting and/or foraging bats. Whilst efforts were made to standardise survey periods, the total number of nights of deployment and dates of deployment varied per location.

The locations of these statics are presented in Figure 1 overleaf. Details on the locations and associated habitats, dates of deployment and number of nights recorded are presented within Table 4 of this report.

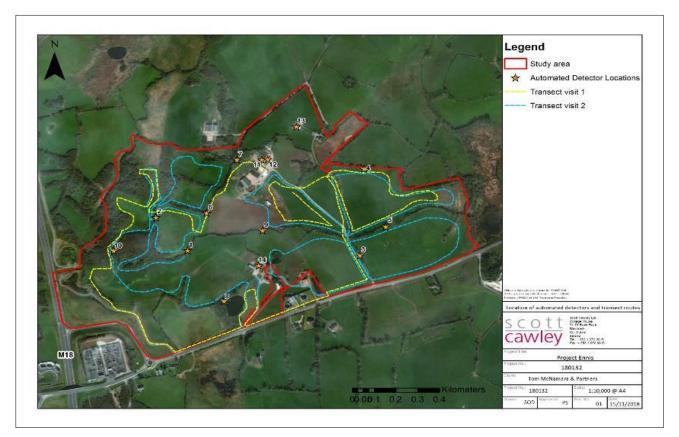


Figure 1 Locations of automated static bat detectors deployed within the subject lands (see Table 2 for details on each of these locations) and walked transect routes

1.5 LIMITATIONS

A preliminary tree roost inspection survey was carried out as part of the initial multidisciplinary site visit. As a consequence of this, not all potential bat roost trees located within the subject lands and that may be impacted by the proposed development have been assessed to the level that will inform the impact assessment. This limitation will be addressed as part of further surveys of the trees within the subject lands, which will be undertaken at a more advanced stage of the project design and during the appropriate survey season. The number of nights which the automated detectors recorded at each location varied, often due to performance issues with some of the detector units. This survey limitation has been overcome by applying a precautionary approach to the judgements made in this report and providing an average figure per detector unit per night, allowing a more realistic comparison to be made between locations.

Calls of certain bat species, *e.g.* brown long-eared bat and lesser horseshoe bat, may be easily be missed on handheld detectors and thus the presence of this species is likely to be understated by the recording data. A precautionary approach has been taken towards the interpretations of the results in order to address this potential limitation.

2. RESULTS

2.1 DESK STUDY RESULTS

Records of six bat species were returned from the National Biodiversity Data Centre data search on the 13th November 2018. These included Daubenton's bat *Myotis daubentonii*, Lesser horseshoe bat

Rhinolophus hipposideros, common pipistrelle bat *Pipistrellus pipistrellus*, soprano pipistrelle bat *P. pygmaeus*, brown long-eared bat *Plecotus auratus* and Leisler's bat *Nyctalus leisleri*. The former five species are listed as being of "*Least concern*" in the *Ireland Red List No. 3: Terrestrial Mammals* (Marnell *et al.*, 2009), while the latter species, Leisler's bat, is listed as being "*Near threatened*".

The review of records held by Bat Conservation Ireland returned 116 records of bat roosts from within approximately 10km of the subject lands. The closest three roosts were all lesser horseshoe bat, located approximately 400m, 700m and 830m south of the subject lands respectively. Six additional lesser horseshoe bat roosts lie within approximately 2km of the subject lands as well as one known common pipistrelle roost located approximately 1.6km south west of the subject lands. The distribution of Lesser horseshoe bat in Ireland is restricted to six counties on the western seaboard (*i.e.* Clare, Cork, Galway, Kerry, Limerick and Mayo) and it has the smallest predicted core area of any other species (Roche *et al.*, 2014).

2.2 FIELD STUDY RESULTS

Tree Roost Inspections

There were a few mature trees within hedgerows throughout the subject lands have some potential to host individual opportunistic roosting bats. No trees were identified as having High suitability for roosting bats, on the basis that trees contained relatively few obvious potential roost features, and no potential roosting features observed were considered likely to host anything other than a small numbers of bats. As illustrated within section 1.6 of this report a designated tree roost inspection survey will be required.

Walked Bat Activity Transect

Common pipistrelle bat, soprano pipistrelle bat, Leisler's bat and unidentified *Pipistrellus* species were recorded during each of the walked transect surveys. Calls of unidentified *Myotis* bat species were also recorded during the transect surveys undertaken on the 16th August 2018. All of these species are known to have a widespread distribution across the region, and in Ireland (Roche *et al.*, 2014).

Bats recorded during the walked transect surveys were either foraging and/or commuting along field boundaries, such as hedgerows, within the subject lands. Relatively high levels of bat activity were noted at the following locations:

- At Tooreen Lough lake adjacent to the R352;
- Along the hedgerows surrounding the woodland in the western section of the subject lands and,
- The double hedgerow lining Tooreen laneway, within the south-eastern section of the subject lands.

These areas are considered to be important for foraging and/or commuting bats.

Based on the total number of calls recorded during the walked transect and whether or not a species was recorded during both visits, the most common species recorded were soprano pipistrelle bat, followed by common pipistrelle bat and then Leisler's bat. Full details for each survey, including the results, are presented in Table 3 below. Locations of the various bat species recorded are shown on Figures 2-8 of this report.

Table 3 Details on walked transects

Date	Survey Type	Bat species recorded	Comments				
Visit 1 – Unde	Visit 1 – Undertaken on the 7 th August 2018						
07/08/2018	7/08/2018 Dusk • Soprano p (Transect) • Common bat, • Leisler' s b • <i>Pipistrellus</i>		The most commonly recorded species during the walked transect was the soprano pipistrelle bat. The majority of soprano pipistrelle bat activity was located around the pond within the property adjacent to the R352 and along the hedgerows lining Tooreen laneway which runs perpendicular to the R352.				
			The next most commonly recorded species was common pipistrelle bat which was mostly noted within similar areas to soprano pipistrelle bat activity.				
			Leisler's bats were also recorded but in small quantities along hedgerows within the south east of the subject lands.				
Visit 2 – Unde	ertaken on the	16 th August 2018					
16/08/2018	Dusk (Transect)	 Soprano pipistrelle bat, Common pipistrelle bat, Leisler' s bat, Pipistrellus species, Myotis species 	The most commonly recorded species during the walked transect was common pipistrelle bat, followed by common pipistrelle bat and Leisler's bat. The majority of bats calls were recorded: nearby to, and over Tooreen Lough; along a hedgerow stretching across the centre of the subject lands from woodland in the western section of the subject lands to a smaller block of woodland within the eastern, and within the woodland located within the western section of the subject lands.				

Automated Static Bat Detector Survey

In total seven bat species were recorded on automated static bat detectors deployed within the survey area including; Leisler's bat, common pipistrelle bat, soprano pipistrelle bat, brown long-eared bat, lesser horseshoe bat, unidentified *Myotis* bats¹³ and unidentified Pipistrelle bats¹⁴.

At Location 1, located within the hedgerow running from east to west across the site and directly east of the woodland area, six of the aforementioned species were recorded with lesser horseshoe bat, *Myotis sp.* and *Pipistrelle sp.* making up the majority of the calls.

At Location 2 all seven species were recorded. At this location soprano pipistrelle bat was the most common species with approximately 1,529 calls recorded, followed by Pipistrelle bat sp. and then common pipistrelle bat. Location 2 was positioned within a hedgerow running from north to south, approximately 50m north-east of the woodland area. Slightly east of this was location 6. At this location lesser horseshoe bat species was the most common species recorded, compared to all other locations, with 92 calls recorded. After this, the next most common species noted at this location were soprano pipistrelle bat (75 calls) and *Myotis* bat species. (71 calls).

Locations 3 and 5 are both located along field boundaries adjacent to Tooreen laneway. A large number of bats were recorded commuting and foraging along the hedgerows in this area with soprano pipistrelle being the most commonly detected species at both locations *i.e.* 3,983 calls and 3,292 calls for location 3 and 5 respectively. Additionally, common pipistrelle bat was the second most common species at both of these locations.

Location 4 was located within a hedgerow further along Tooreen laneway in the north-east of the subject lands, approximately 200m north of detector location 5. Similar to the other automated detectors within the east of the subject lands (*i.e.* 3 and 5), pipistrelle bats, *i.e.* common pipistrelle bat, soprano pipistrelle bat and unidentified pipistrelle bats, were most commonly recorded.

At Location 7, located within a hedgerow behind the property in the north of the site, all seven species were recorded commuting and foraging in the vicinity. Soprano pipistrelle bat was the most common species recorded with 734 calls, followed by common pipistrelle bat with 98 calls.

The most southerly deployed detector within the subject lands was location 8, which was set up within a treeline adjacent to Tooreen Lough. Soprano pipistrelle bat was the most common species recorded with 1,174 calls, followed by common pipistrelle bat with 160 calls. Other bat species recorded at this location include Leisler's bat, *Myotis* bat *sp.* and lesser horseshoe bat. Only 1 call from lesser horseshoe bats was noted.

The automated detector deployed at location 9 recorded calls from the following six species; soprano pipistrelle bat, common pipistrelle bat, Leisler's bat, lesser horseshoe bat, brown long-eared bat and *Myotis* bat *sp.* Approximately 2,115 soprano pipistrelle calls were recorded at this location, making it

¹³ Calls identified as belonging to species of the genus *Myotis* were recorded on automated detectors. Species of the genus *Myotis* which have been recorded in Ireland comprise Daubenton's bat *Myotis daubentonii*, whiskered bat *Myotis mystacinus*, Brandt's bat *Myotis brandtii* (vagrant), and Natterer's bat *Myotis nattereri*. These species tend to exhibit similar call sonograms, which are often very difficult to differentiate with any accuracy. For this reason, these species have been assigned to genus level only.

¹⁴ In some instances, it can be difficult to differentiate between calls of both pipistrelle species, where their peak frequency approaches 50kHz, and in this instance we have assigned the generic category *Pipistrellus* species.

the most common species. Similar to location 1, location 9 was deployed within the hedgerow running from east to west across the centre of the site; however, location 9 was situated further east toward Tooreen laneway.

The automated detector at location 10 was deployed within the woodland area in the west of the subject lands. *Myotis* bat *sp.* and lesser horseshoe bats were the most commonly recorded calls in this area, accounting for 250 and 184 of the calls respectively. Soprano pipistrelle and common pipistrelle were also detected, but in lesser call numbers.

Automated detectors at locations 11 and 12 were both deployed within farm sheds located in the north of the subject lands, at the end of Tooreen laneway. Both of these were placed in stone-walled sheds with corrugated metal roofs. On both detector units, soprano pipistrelle bat was the most common species recorded with 247 calls at location 11 and 126 calls at location 12. At location 11 lesser horseshoe bat was the second most commonly recorded species with 57 calls. At location 12 however, the second most commonly-recorded species was brown long-eared bat with 94 calls, followed by common pipistrelle bat with 44 calls and then lesser horseshoe bat with 25 calls noted. It is likely that detectors placed within open sheds will record bats flying outside as well as inside the shed.

Similar to location 11 and 12 described above, location 13 was located within a farm shed in the north of the subject lands. Common pipistrelle bat was the most commonly recorded species with 626 calls, then soprano pipistrelle bat with 37 calls, brown long-eared bat with 30 calls, lesser horseshoe bat with 22 calls, *Myotis* bat *sp.* with 5 calls and *Pipistrellus* bat *sp.* with 2 calls.

The final automated detector deployed was at location 14 within a stone barn behind the property located within the south of the subject lands and adjacent to the R352. Five species were recorded at this location with soprano pipistrelle comprising of the majority of the calls (*i.e.* 119). Similar numbers of common pipistrelle, Leisler's bat and lesser horseshoe bat were recorded at this location, accounting for 37, 33 and 30 of the calls respectively. Only 1 call for *Myotis sp.* was noted.

Details on the locations, timings and species recorded at each static deployed is presented in Table 4 below.

Location	Habitat description	Deployment dates	Number of nights recorded	Species recorded ¹⁵
1	Automated detector placed within a hedgerow located directly east of woodland area.	6th July 2018 – 20th July 2018	1	 Pipistrelle sp. (14) Soprano pipistrelle (10) Common pipistrelle (8)
		7th August 2018 – 17th August 2018	6	 Lesser horseshoe bat (52) Myotis sp. (51) Leisler's bat (8) Pipistrelle sp. (6) Soprano pipistrelle (5) Common pipistrelle (4)
2	Automated detector placed within a hedgerow north-east of woodland area, within the west of the subject lands.	6th July 2018 – 20th July 2018	1	 Pipistrelle sp. (204) Soprano pipistrelle (79) Common pipistrelle (15) Lesser horseshoe bat (15)
		7th August 2018 – 17th August 2018	5	 Soprano pipistrelle (1,450) Common pipistrelle (107) Leisler's bat (34) Myotis sp. (10) Brown long-eared bat (1)
3	Automated detector was deployed within an ash tree along Tooreen laneway.	6th July 2018 – 20th July 2018	1	 Soprano pipistrelle (149) Pipistrelle sp. (134) Common pipistrelle (84) Leisler's bat (39) Myotis sp. (4)

Table 4 Results of bat activity surveys per location using automated detectors

¹⁵ The number of bat calls is provided beside each species in brackets. To note, this does not necessarily correspond to the exact number of bats using the lands; however, it does provide an indication of usage by a particular bat species at that location

Location	Habitat description	Deployment dates	Number of nights recorded	Species recorded ¹⁵
		7th August 2018 – 17th August 2018	8	 Soprano pipistrelle (3,834) Common pipistrelle (341) Myotis sp. (104) Pipistrelle sp. (6) Leisler's bat (6) Lesser horseshoe bat (5)
4	Automated detector was deployed within a hedgerow, running from east to west within the north east of the subject lands.	6th July 2018 – 20th July 2018	1	 Common pipistrelle (81) Pipistrelle sp. (74) Soprano pipistrelle (60) Leisler's bat (42) Myotis sp. (4) Lesser horseshoe bat (1)
		7th August 2018 – 17th August 2018	8	 Soprano pipistrelle (1,025) Common pipistrelle (155) Leisler's bat (9) Lesser horseshoe bat (2) Myotis sp. (1)
5	Automated detector deployed within a hedgerow, running from east to west in the north of the site.	17th August 2018 – 28th August 2018	6	 Soprano pipistrelle (3,292) Common pipistrelle (423) Lesser horseshoe bat (30) Myotis sp. (27) Pipistrelle sp. (4) Leisler's bat (1)
6	Detector was deployed within a hedgerow.	20th July 2018 – 27th July 2018	1	 Soprano pipistrelle (71) Common pipistrelle (18) Lesser horseshoe bat (2) Myotis sp. (1) Leisler's bat (1)

Location	Habitat description	Deployment dates	Number of nights recorded	Species recorded ¹⁵
		27th July 2018 – 7th August 2018	6	 Lesser horseshoe bat (90) Myotis sp. (70) Soprano pipistrelle (4) Leisler's bat (2) Common pipistrelle (1)
7	Automated detector was deployed within a hedgerow towards the northern boundary of the subject lands, behind the farm sheds.	17th August 2018 – 28th August 2018	11	 Soprano pipistrelle (734) Common pipistrelle (98) Leisler's bat (55) Myotis sp. (54) Lesser horseshoe bat (30) Pipistrelle sp. (4) Brown long-eared bat (1)
8	Automated detector was placed within hedgerow/Treeline adjacent to	20th July 2018 – 27th July 2018	1	Soprano pipistrelle (271)Common pipistrelle (24)
	Tooreen Lough	27th July 2018 – 7th August 2018	11	 Soprano pipistrelle (903) Common pipistrelle (136) Leisler's bat (4) Myotis sp. (2) Lesser horseshoe bat (1)
9	Automated detector was placed within hedgerow running from east to west across the centre of the site. It is located within the same hedgerow as location 1, except further east.	20th July 2018 – 27th July 2018	1	 Soprano pipistrelle (433) Common pipistrelle (37) Leisler's bat (10) Lesser horseshoe bat (2) Brown long-eared bat (1) Myotis sp. (1)
		27th July 2018 – 7th August 2018	11	Soprano pipistrelle (1,682)Common pipistrelle (304)

Location	Habitat description	Deployment dates	Number of nights recorded	Species recorded ¹⁵
				 Leisler's bat (62) Lesser horseshoe bat (49) Myotis sp. (20) Brown long-eared bat (4)
10	Automated detector was placed within the centre of the woodland in the western side of the subject lands.	20th July 2018 – 27th July 2018	1	 Myotis sp. (9) Soprano pipistrelle (5) Common pipistrelle (2) Pipistrelle sp. (1)
		27th July 2018 – 7th August 2018	11	 Myotis sp. (241) Lesser horseshoe bat (184) Soprano pipistrelle (116) Common pipistrelle (6) Pipistrelle sp. (1)
11	Automated detector was deployed within a vehicle storage shed with corrugated metal roof and stone walls in the northern section of the subject lands.	11th October 2018 – 31st October 2018	9	 Soprano pipistrelle (247) Lesser horseshoe bat (57) Myotis sp. (19) Common pipistrelle (1)
12	Automated detector was deployed within a tool shed with corrugated metal roof and stone walls in the northern section of the subject lands.	11th October 2018 – 31st October 2018	19	 Soprano pipistrelle (126) Brown long-eared bat (94) Common pipistrelle (44) Lesser horseshoe bat (25) Myotis sp. (14) Leisler's bat (4) Pipistrelle sp. (2)
13	Automated detector was deployed within a storage shed with corrugated	11th October 2018 – 31st October 2018	7	Common pipistrelle (626)Soprano pipistrelle (37)

Location	Habitat description	Deployment dates	Number of nights recorded	Species recorded ¹⁵
	plastic roof and stone walls in the northern section of the subject lands.			 Brown long-eared bat (30) Lesser horseshoe bat (22) Myotis sp. (5) Pipistrelle sp. (2)
14	Automated detector was deployed within a stone barn in the property adjacent to the R352, within the southern section of the subject lands.	7th August 2018 – 17th August 2018	9	 Soprano pipistrelle (119) Common pipistrelle (37) Leisler's bat (33) Lesser horseshoe bat (30) Myotis sp. (1)

Significance of results per species

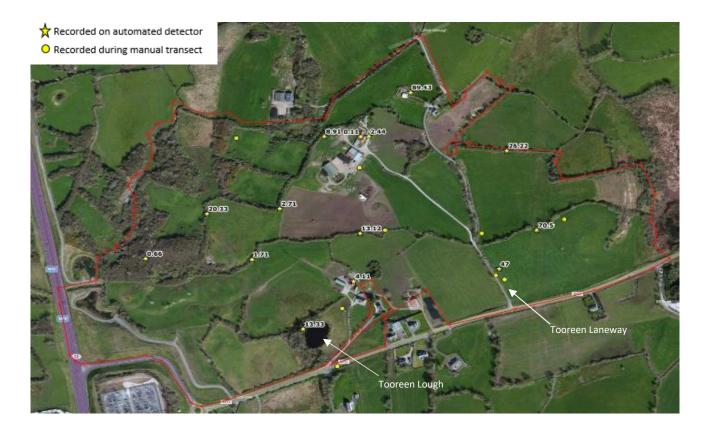
Figures 2–8 below show the location of each bat species as recorded within the subject lands. Locations highlighted with a star indicate a species recorded on an automated static bat detector, while locations highlighted with a circle illustrate the location of that species noted during a walked transect. The numbers beside each of the automated static bat detector recordings indicate the average number of that species recorded per night. These numbers as well as observations made during the walked transects provide an indication of the level of usage of different features within the subject lands by the different bat species Overall, the most common species recorded during both the walked transect and automated detectors were soprano pipistrelle followed by common pipistrelle, *myotis sp.*, lesser horseshoe bat, *pipistrelle sp.*, Leisler's bat and finally brown long-eared bat.

Soprano pipistrelle bat

Soprano pipistrelle bats were noted throughout the subject lands, with the majority of activity recorded:

- along the hedgerows and field boundaries adjacent to Tooreen laneway within the eastern section of the subject lands;
- followed by the hedgerow running from north to south adjacent to the woodland area; and,
- the area adjacent to the Tooreen Lough in close proximity to the southern boundary of the subject lands.

Figure 2 Location of soprano pipistrelle bats calls recorded during both the walked transects and automated static bat detector deployment, along with the average number of soprano pipistrelle calls recorded per night during the static deployment only


Common pipistrelle bat

Similar to soprano pipistrelle bats, the majority of activity recorded for common pipistrelle was located;

- within the east of the subject lands along the hedgerow running from north to south along Tooreen laneway; and,
- along the hedgerow running from east to west adjacent to this.

The hedgerow running from to north to south adjacent to the woodland as well as the farm shed in the far north of the site (*i.e.* location 13), were also deemed important for common pipistrelle bats due to the relatively high level of calls recorded within a night (*i.e.* 20.33 and 89.43 respectively).

Figure 3 Location of common pipistrelle bat calls recorded during both the walked transects and automated static bat detector deployment, along with the average number of common pipistrelle bat calls recorded in a night during the static deployment only

Unidentified Myotis bat species

No *Myotis* bats species were recorded during the first walked transect on the 7th August and only three *Myotis* bat species were recorded during the second walked transect on the 16th August. Most of the *Myotis* bat species activity recorded during this walked transect was noted along the hedgerow running from north to south directly east of the woodland area, with only one bat observed foraging along the hedgerow adjacent to Tooreen laneway.

While, *Myotis* bat species were recorded across the entire site on all automated detectors, the woodland within the west of the site had the highest number of calls. This coupled with observations made during the walked transect highlight the importance of this area for *Myotis* bat species. As for

previously described species, the hedgerow along Tooreen laneway was also deemed important for foraging and commuting *Myotis* bat species.

Figure 4 Location of Myotis bat species calls recorded during both the walked transects and automated static bat detector deployment, along with the average number of Myotis bat species calls recorded in a night during the static deployment only

Figure 5 Location of lesser horseshoe bat calls recorded during both the walked transects and automated static bat detector deployment, along with the average number of lesser horseshoe bat calls recorded in a night during the static deployment only

Unidentified pipistrelle

The areas with the highest levels of unidentified pipistrelle bat activity were located along Tooreen laneway and the hedgerow running north to south, directly adjacent to the woodland. As illustrated in Figures 2-4, linear vegetation features within the east of the subject lands and the hedgerow located directly east of the woodland area were deemed the most important areas for commuting and foraging pipistrelle bats.

Figure 6 Location of unidentified pipistrelle bat calls recorded during both the walked transects and automated static bat detector deployment, along with the average number of unidentified pipistrelle calls recorded in a night during the static deployment only



Leisler's bat

Leisler's bat activity was confined to;

- the east and centre of the subject lands with no calls recorded around the woodland or hedgerows towards the western sections of the site.
- The highest level of activity was found along Tooreen laneway hedgerows and the adjacent field boundaries to the north east of the site.
- A higher level of activity was also noted at detector location 16, within a farm shed belonging to the property along the southern boundary.

Figure 7 Location of Leisler's bat calls recorded during both the walked transects and automated static bat detector deployment, along with the average number of Leisler's bat calls recorded in a night during the static deployment only

Brown long-eared bat

No brown long-eared bats were recorded during the walked transects. The species was recorded on automated detectors in locations 2, 8, 11, 14 and 15, with the majority of activity based around the farm buildings within the north of the subject lands (Figure 8).

Figure 8 Location of brown long-eared bat calls recorded during both the walked transects and automated static bat detector deployment, along with the average number of brown long-eared bat calls recorded in a night during the static deployment only

3. EVALUATION AND CONCLUSION

All bat species in Ireland are protected under the Wildlife Acts 1976-2012 and are listed in Annex IV of the EU Habitats Directive 92/43/EEC (as amended). It is an offence under Section 23 of the Wildlife Acts 1976-2012 and under Section 51 of the European Communities (Birds and Natural Habitats) Regulations, 2011 to kill or to damage or destroy the breeding or resting place of any bat species. Under the Birds and Natural Habitats Regulations it is not necessary that the action should be deliberate for on offence to occur. This places an onus of due diligence on anyone proposing to carry out works that that might result in such damage or destruction.

Given the availability of commuting and foraging features and the suitability for buildings and vegetation within the subject lands to host a population of roosting bats, the subject lands as a whole are deemed to have a high level of suitability for bats. The specific value of each area/ feature within the lands differs depending on the species in question, however the main areas of importance include:

- the woodland along the western boundary;
- the hedgerow running from west to east through the site;
- the double hedgerow lining Tooreen laneway in the east; and,
- the hedgerow/ field boundaries surrounding the Tooreen Lough within the south of the site.

The loss of these habitats in particular may result in a direct significant impact on roosting bat species, if present, and/or indirect significant impact on commuting and/or foraging bats due to the loss of suitable foraging habitat and/or fragmentation of commuting routes.

The lowest classification given to these areas within the subject lands with regard bats is local importance (higher value), in accordance with NRA (2009) and CIEEM (2018) guidelines. This is on a precautionary basis given the protection afforded to bats and their roosts under the Wildlife Acts and under the Habitats Directive.

Although soprano pipistrelle, common pipistrelle and Leisler's bat were recorded in high numbers across the site, they are known to have a widespread distribution across the region, and in Ireland (Roche *et al.*, 2014), however common pipistrelle bats and Leisler's bats tend to show a southern bias in their distributions, with greater numbers occurring in the south west and east of the country than in the north. In contrast to this, soprano pipistrelle bats vary in abundance across the country (Aughney *et al.*, 2018). Additionally, all three species have shown an increase in their population trend. Taking this into account, as well as the availability of suitable roosting, commuting and foraging habitat in the immediate surrounding environment, the habitats within the study area are considered to be of *local importance (higher value)* for Leisler's bat and bats of the pipistrelle species. Similarly, brown long-eared bats are widely distributed across the country and have also shown an increasing population trend, thus habitats were assigned the same classification of local importance (higher value), despite the lower numbers of this species recorded through the subject lands.

Myotis bat species, including Daubenton's bat, whiskered bat and Natterer's bat *Myotis nattereri* have a relatively wide but thin distribution throughout Ireland. Bat species of the genus *Myotis* were associated most commonly with habitats within the west of the site, *i.e.* the woodland area. Outside of the subject lands the next closest area of significant woodland is *c.* 110m south. Similarly, certain species in the genus *Myotis* (*i.e.* Daubenton's bat) perform the majority of its foraging over water. Numerous smaller waterbodies are present outside of the subject lands, such as the larger lakes of Holaan Lough, located approximately 500m south-east of the subject lands, Girroga Lough located approximately 2.3km west, and Ballyallia Lake located approximately 2.6km north-west. Given the widespread distribution of bats of the genus *Myotis* and the availability of similar habitat (woodland and waterbodies) within the immediate surrounding environment, the subject lands have been classified as *local importance (higher value)* for *Myotis* sp.

Although lesser horseshoe bats were found throughout the subject lands, the majority of activity was focused in the west of the site, *i.e.* within the woodland area and associated hedgerows. Unlike other species, lesser horseshoe bats do not have a wide distribution throughout the country with its core area restricted to six western counties (*i.e.* Clare, Cork, Galway, Kerry, Limerick and Mayo). Lesser horseshoe bats are known to forage a few kilometres from the roost, relying on linear landscape features to commute to and from these roosts, and avoiding flying out in the open (Roche *et al.*, 2014). As evident from the desk study, numerous small lesser horseshoe roosts exist in the vicinity of the subject lands and it is likely that they use the subject lands for foraging or the linear vegetation features for commuting to and from their roosts.

Given the small range of the species, the quantity and proximity of confirmed lesser horseshoe bat roosts around the site as well as the species' sensitivity to habitat change and removal of linear vegetation features, the subject land have been classified as national importance for lesser horseshoe bats.

Based on the information above, gathered during walked transects and automated detector deployments, the areas of highest ecological constraint within the subject lands, in the context of commuting and foraging bat species, are the woodland area in the west of the site as well as the hedgerows lining Tooreen laneway within the east. After this, the hedgerows branching off the

woodland, running from west to east, the area around the pond and associated hedgerow and the field boundary within the north east corner of the site are deemed to be of moderate ecological constraint for bat species within the lands. Finally, areas that are still considered important for local bat species, but the lowest ecological constraint in comparison, include the farm sheds within the properties to the south and north of the site.

This information is presented in Figure 9 of this report below. Areas highlighted in red indicate highest ecological constraint areas, orange indicates moderate and while indicates a lower ecological constraint area.

Figure 9 Areas of high, moderate and low ecological constraint for bats located within the subject lands

References

Aughney, T., Roche, N. & Langton, S. (2018) *The Irish Bat Monitoring Programme 2015-2017*. Irish Wildlife Manuals, No. 103. National Parks and Wildlife Service, Department of Culture Heritage and the Gaeltacht, Ireland

Chartered Institute of Ecology and Environmental Management (2018) *Guidelines for Ecological Impact Assessment in the UK and Ireland: Terrestrial, Freshwater, Coastal and Marine*. Chartered Institute of Ecology and Environmental Management.

Collins, J. (2016). *Bat Surveys for Professional Ecologists: Good Practice Guidelines (3rd edn.)*. The Bat Conservation Trust, London.

Marnell, F., Kingston, N. & Looney, D. (2009) *Ireland Red List No. 3: Terrestrial Mammals,* National Parks and Wildlife Service, Department of the Environment, Heritage and Local Government, Dublin, Ireland.

Mitchell-Jones, A.J., Amori, G., Bogdanowicz, W., Krystufek, B., Reijnders, P.J.H, Spitzenberger, F., Stubbe, M., Thissen, J.B.M, Vohralik, V. and Zima, J. (1999). *The Atlas of European Mammals.* London, U.K.: T & AD Poyser.

National Roads Authority (2006). *Best Practice Guidelines for the Conservation of Bats in the Planning of National Road Schemes*. National Roads Authority, Dublin.

National Roads Authority (2009) *Guidelines for Assessment of Ecological Impacts of National Road Schemes*. Revision 2. Dublin: National Roads Authority.

Roche, N., Aughney, T., Marnell, F., and Lundy, M. (2014). *Irish Bats of the 21st Century*. Bat Conservation, Ulex House, Lisduff, Virginia, Co. Cavan, Ireland. ISBN 978-0-9930672-0-4.

Russ, J. (2012). *British Bat Calls: A Guide to Species Identification.* Pelagic Publishing, Exeter, United Kingdom. ISBN 978-1-907807-25-1.

APPENDIX 8.1

DESCRIPTION OF THE AERMOD MODEL

PREPARED BY AWN CONSULTING LTD.

The AERMOD dispersion model has been recently developed, in part, by the U.S. Environmental Protection Agency (USEPA, 2017). The model is a steady-state Gaussian model used to assess pollutant concentrations associated with industrial sources. The model is an enhancement on the Industrial Source Complex-Short Term 3 (ISCST3) model which has been widely used for emissions from industrial sources. The 2005 Guidelines on Air Quality Models has promulgated AERMOD as the preferred model for a refined analysis from industrial sources, in all terrains.

Improvements over the ISCST3 model include the treatment of the vertical distribution of concentration within the plume. ISCST3 assumes a Gaussian distribution in both the horizontal and vertical direction under all weather conditions. AERMOD, however, treats the vertical distribution as non-Gaussian under convective (unstable) conditions while maintaining a Gaussian distribution in both the horizontal and vertical direction during stable conditions. This treatment reflects the fact that the plume is skewed upwards under convective conditions due to the greater intensity of turbulence above the plume than below. The result is a more accurate portrayal of actual conditions using the AERMOD model. AERMOD also enhances the turbulence of night-time urban boundary layers thus simulating the influence of the urban heat island.

In contrast to ISCST3, AERMOD is widely applicable in all types of terrain. Differentiation of the simple versus complex terrain is unnecessary with AERMOD. In complex terrain, AERMOD employs the dividing-streamline concept in a simplified simulation of the effects of plume-terrain interactions. In the dividing-streamline concept, flow below this height remains horizontal, and flow above this height tends to rise up and over terrain. Extensive validation studies have found that AERMOD performs better than ISCST3 for many applications and as well or better than CTDMPLUS for several complex terrain data sets (USEPA, 1999).

AERMOD has made substantial improvements in the area of plume growth rates in comparison to ISCST3 (USEPA 2017). ISCST3 approximates turbulence using six Pasquill-Gifford-Turner Stability Classes and bases the resulting dispersion curves upon surface release experiments. This treatment, however, cannot explicitly account for turbulence in the formulation. AERMOD is based on the more realistic modern planetary boundary layer (PBL) theory which allows turbulence to vary with height. This use of turbulence-based plume growth with height leads to a substantial advancement over the ISCST3 treatment.

Improvements have also been made in relation to mixing height (USEPA 2017). The treatment of mixing height by ISCST3 is based on a single morning upper air sounding each day. AERMOD, however, calculates mixing height on an hourly basis based on the morning upper air sounding and the surface energy balance, accounting for the solar radiation, cloud cover, reflectivity of the ground and the latent heat due to evaporation from the ground cover. This more advanced formulation provides a more realistic sequence of the diurnal mixing height changes.

AERMOD also contains improved algorithms for dealing with low wind speed (near calm) conditions. As a result, AERMOD can produce model estimates for conditions

when the wind speed may be less than 1 m/s, but still greater than the instrument threshold.

APPENDIX 8.2

DESCRIPTION OF THE AERMET

PREPARED BY AWN CONSULTING LTD.

AERMOD incorporates a meteorological pre-processor AERMET. AERMET allows AERMOD to account for changes in the plume behaviour with height. AERMET calculates hourly boundary layer parameters for use by AERMOD, including friction velocity, Monin-Obukhov length, convective velocity scale, convective (CBL) and stable boundary layer (SBL) height and surface heat flux. AERMOD uses this information to calculate concentrations in a manner that accounts for changes in dispersion rate with height, allows for a non-Gaussian plume in convective conditions, and accounts for a dispersion rate that is a continuous function of meteorology.

The AERMET meteorological preprocessor requires the input of surface characteristics, including surface roughness (z0), Bowen Ratio and albedo by sector and season, as well as hourly observations of wind speed, wind direction, cloud cover, and temperature. A morning sounding from a representative upper air station, latitude, longitude, time zone, and wind speed threshold are also required.

Two files are produced by AERMET for input to the AERMOD dispersion model. The surface file contains observed and calculated surface variables, one record per hour. The profile file contains the observations made at each level of a meteorological tower, if available, or the one-level observations taken from other representative data, one record level per hour.

From the surface characteristics (i.e. surface roughness, albedo and amount of moisture available (Bowen Ratio)) AERMET calculates several boundary layer parameters that are important in the evolution of the boundary layer, which, in turn, influences the dispersion of pollutants. These parameters include the surface friction velocity, which is a measure of the vertical transport of horizontal momentum; the sensible heat flux, which is the vertical transport of heat to/from the surface; the Monin-Obukhov length which is a stability parameter relating the surface friction velocity to the sensible heat flux; the daytime mixed layer height; the nocturnal surface layer height and the convective velocity scale which combines the daytime mixed layer height and the sensible heat flux. These parameters all depend on the underlying surface.

The values of albedo, Bowen Ratio and surface roughness depend on land-use type (e.g. urban, cultivated land etc.) and vary with seasons and wind direction. The assessment of appropriate land-use types was carried out in line with USEPA recommendations.

Surface roughness

Surface roughness length is the height above the ground at which the wind speed goes to zero. Surface roughness length is defined by the individual elements on the landscape such as trees and buildings. In order to determine surface roughness length, the USEPA recommends that a representative length be defined for each sector, based on an upwind area-weighted average of the land use within the sector, by using the eight land use categories outlined by the USEPA. The inverse-distance weighted surface roughness length derived from the land use classification within a radius of 1 km from Shannon Airport Meteorological Station is shown in Table A8.1.

Table A8.1	Surface Roughness based on an inverse distance weighted average of the land use
	within a 1 km radius of Shannon Airport Meteorological Station

Sector	Area Weighted Land Use Classification	Spring	Summer	Autumn	Winter Note 1
270-180	100% Grassland	0.05	0.10	0.01	0.01
180-270	100% Urban	1	1	1	1

Note 1 Winter defined as periods when surfaces covered permanently by snow whereas autumn is defined as periods when freezing conditions are common, deciduous trees are leafless and no snow is present (lqbal (1983)). Thus for the current location autumn more accurately defines "winter" conditions in Ireland.

Albedo

Noon-time albedo is the fraction of the incoming solar radiation that is reflected from the ground when the sun is directly overhead. Albedo is used in calculating the hourly net heat balance at the surface for calculating hourly values of Monin-Obuklov length. A 10 km x 10 km square area is drawn around the meteorological station to determine the albedo based on a simple average for the land use types within the area independent of both distance from the station and the near-field sector. The classification within 10 km from Shannon Airport Meteorological Station is shown in Table A8.2.

Table A8.2Albedo based on a simple average of the land use within a 10 km × 10 km grid centred
on Shannon Airport Meteorological Station

Area Weighted Land Use Classification	Spring	Summer	Autumn	Winter Note 1
6% Urban, 49% Grassland, 45% Water	0.151	0.143	0.172	0.172

Note 1 For the current location autumn more accurately defines "winter" conditions in Ireland.

Bowen Ratio

The Bowen ratio is a measure of the amount of moisture at the surface of the earth. The presence of moisture affects the heat balance resulting from evaporative cooling which, in turn, affects the Monin-Obukhov length which is used in the formulation of the boundary layer. A 10 km x 10 km square area is drawn around the meteorological station to determine the Bowen Ratio based on geometric mean of the land use types within the area independent of both distance from the station and the near-field sector. The classification within 10 km from Shannon Airport Meteorological Station is shown in Table A8.3.

 Table A8.3
 Bowen Ratio based on a geometric mean of the land use within a 10 km × 10 km grid centred on Shannon Airport Meteorological Station

Area Weighted Land Use Classification	Spring	Summer	Autumn	Winter Note 1
19% Urban, 81% Grassland	0.301	0.557	0.655	0.655

Note 1 For the current location autumn more accurately defines "winter" conditions in Ireland.

APPENDIX 9.1

GLOSSARY OF ACOUSTIC TERMINOLOGY

PREPARED BY AWN CONSULTING LIMITED

ambient noise	The totally encompassing sound in a given situation at a given time, usually composed of sound from many sources, near and far.
background noise	The steady existing noise level present without contribution from any intermittent sources. The A-weighted sound pressure level of the residual noise at the assessment position that is exceeded for 90 per cent of a given time interval, T ($L_{AF90,T}$).
broadband	Sounds that contain energy distributed across a wide range of frequencies.
dB	Decibel - The scale in which sound pressure level is expressed. It is defined as 20 times the logarithm of the ratio between the RMS pressure of the sound field and the reference pressure of 20 micro-pascals (20 μ Pa).
dB L _{pA}	An 'A-weighted decibel' - a measure of the overall noise level of sound across the audible frequency range (20 Hz $-$ 20 kHz) with A-frequency weighting (i.e. 'A'-weighting) to compensate for the varying sensitivity of the human ear to sound at different frequencies.
Hertz (Hz)	The unit of sound frequency in cycles per second.
impulsive noise	A noise that is of short duration (typically less than one second), the sound pressure level of which is significantly higher than the background.
L _{Aeq,T}	This is the equivalent continuous sound level. It is a type of average and is used to describe a fluctuating noise in terms of a single noise level over the sample period (T). The closer the L_{Aeq} value is to either the L_{AF10} or L_{AF90} value indicates the relative impact of the intermittent sources and their contribution. The relative spread between the values determines the impact of intermittent sources such as traffic on the background.
Lafn	The A-weighted noise level exceeded for N% of the sampling interval. Measured using the "Fast" time weighting.
L _{AFmax}	is the instantaneous slow time weighted maximum sound level measured during the sample period (usually referred to in relation to construction noise levels).
L _{Ar,T}	The Rated Noise Level, equal to the L_{Aeq} during a specified time interval (T), plus specified adjustments for tonal character and impulsiveness of the sound.
L _{AF90} L _{AT} (DW)	Refers to those A-weighted noise levels in the lower 90 percentile of the sampling interval; it is the level which is exceeded for 90% of the measurement period. It will therefore exclude the intermittent features of traffic and is used to estimate a background level. Measured using the "Fast" time weighting. equivalent continuous downwind sound pressure level.

L _{fT} (DW)	equivalent continuous downwind octave-band sound pressure level.
L _{day}	L_{day} is the average noise level during the daytime period of 07:00hrs to 19:00hrs
Lnight	L_{night} is the average noise level during the night-time period of 23:00hrs to 07:00hrs.
low frequency noise	LFN - noise which is dominated by frequency components towards the lower end of the frequency spectrum.
noise	Any sound, that has the potential to cause disturbance, discomfort or psychological stress to a person exposed to it, or any sound that could cause actual physiological harm to a person exposed to it, or physical damage to any structure exposed to it, is known as noise.
noise sensitive location	NSL – Any dwelling house, hotel or hostel, health building, educational establishment, place of worship or entertainment, or any other facility or other area of high amenity which for its proper enjoyment requires the absence of noise at nuisance levels.
octave band	A frequency interval, the upper limit of which is twice that of the lower limit. For example, the 1,000Hz octave band contains acoustical energy between 707Hz and 1,414Hz. The centre frequencies used for the designation of octave bands are defined in ISO and ANSI standards.
rating level	See L _{Ar,T} .
sound power level	The logarithmic measure of sound power in comparison to a referenced sound intensity level of one picowatt (1pW) per m ² where:
	$Lw = 10Log \frac{P}{P_0} dB$
	Where: p is the rms value of sound power in Watts; and P_0 is 1 pW.
sound pressure level	The sound pressure level at a point is defined as:
	$Lp = 20Log \frac{P}{R} dB$

$$Lp = 20Log \frac{P}{P_0} \text{ dB}$$

Where: p is the rms value of sound power in pascals; and P₀ is 2x10⁻⁵ Pa.

specific noise level A component of the ambient noise which can be specifically identified by acoustical means and may be associated with a specific source. In BS 4142, there is a more precise definition as follows: 'the equivalent continuous A-weighted sound pressure level at the assessment position produced by the specific noise source over a given reference time interval (L_{Aeg, T})'.

tonal	Sounds which cover a range of only a few Hz which contains a clearly audible tone i.e. distinguishable, discrete or continuous noise (whine, hiss, screech, or hum etc.) are referred to as being 'tonal'.
¹ / ₃ octave analysis	Frequency analysis of sound such that the frequency spectrum is subdivided into bands of one-third of an octave each.

APPENDIX 9.2

BASELINE NOISE MONITORING SURVEY

PREPARED BY AWN CONSULTING LIMITED

An environmental noise survey has been conducted in order to quantify the existing noise environment. The survey was conducted in general accordance with ISO 1996: 2017: *Acoustics – Description, measurement and assessment of environmental noise.* Specific details are set out below.

10.2.1 Survey Details

10.2.1.1 Dates & Times of Survey

Noise measurements were conducted during typical day, evening and night-time periods. The night-time survey represents the time of night that provides a measure of existing background noise levels during a period where people are attempting to go to sleep or are sleeping. The surveys were conducted during the following periods:

- Daytime 11:10hrs to 16:05hrs on 13 April 2021;
- Evening 21:36hrs to 22:50hrs on 13 April 2021, and;
- Night-time 23:00hrs on 13 April to 01:26hrs on 14 April 2021.

10.2.1.2 Personnel and Instrumentation

Alex Ryan (AWN) conducted the noise level measurements during all survey periods.

The noise measurements were performed using a Brüel & Kjær Type 2250 Sound Level Analyzer. Before and after the survey the measurement apparatus was check calibrated using a Brüel & Kjær Type 4231 Sound Level Calibrator.

10.2.1.3 Measurement Locations

Figure 10.2.1 details the approximate location of the measurement positions identified below.

Figure 10.2.1 Noise Survey Locations (Source: Google Maps)

- **Location A** Located towards the eastern boundary of the site. This location would be considered to be representative of the noise sensitive residences located to the east of the site.
- **Location B** Located on open ground in the northern section of the site. The location is considered to be representative of noise sensitive locations located to the north along a minor road.
- **Location C** Located to the rear of the closest residential properties located on the southern boundary of the site and off the R352 (Tulla Road). This location would be representative of the various noise sensitive properties located on both sides of the R352 (Tulla Road).
- **Location D** Located to the west of the site. The location would be considered to be representative of noise levels in the vicinity of the Knockaneen halting site.

10.2.1.4 Methodology

Measurements were conducted at the boundary location noted above. Sample periods for the noise measurements were typically 15 minutes. The results were noted onto a Survey Record Sheet immediately following each sample and were also saved to the instrument memory for later analysis if required. Survey personnel noted the primary noise sources contributing to noise build-up.

10.2.1.5 Weather

The weather during the daytime survey periods was dry with wind speeds <5m/s. Temperatures were of the order of 16°C. Cloud cover was minimal (some 10%).

The weather during the evening and night-time survey period was dry with wind speeds <5m/s. Temperatures were of the order of 5°C. Cloud cover was minimal (some 20%).

10.2.3 Survey Results

Location A

The survey results for Location A are given in Table 10.2.1 below.

Start Time		Measured Noise Levels (dB re. 2x10 ⁻⁵ Pa)					
		L _{Aeq}	L _{AF10}	L _{AF90}			
	11:10	49	54	38			
Daytime	12:38	44	44	33			
	14:33	38	41	33			
Evening	21:36	36	39	30			
Night-time	22:58	39	43	30			
Night-time	00:16	34	37	30			

 Table 10.2.1
 Summary of Results for Location A

Ambient daytime noise levels at this location were dominated local agricultural activities and distant traffic movements along the Tulla Road. Other noise sources noted including dogs barking and birdsong. Distant road traffic noise typically dictated background noise levels. Ambient (i.e. L_{Aeq,15min}) levels were in the range of 38 to 49dB with background noise levels in the range of 33 to 38dB.

Evening noise levels were dictated by distant traffic noise including the Tulla Road. Ambient noise levels were the order of 36 dB $L_{Aeq,15min}$ and with background noise levels the order of 30 dB $L_{A90,15min}$.

Night-time noise levels were influenced by distant road traffic movements along with and wind generated noise on nearby foliage. Ambient noise levels were in the range of 34 to 39 dB with background noise levels were in the order of 30 dB.

Location B

The survey results for Location B are given in Table 10.2.2 below.

	Sammary of Recounter	er Eesaalert B					
Start Time		Measured Noise Levels (dB re. 2x10 ⁻⁵ Pa)					
Star	t mine	L _{Aeq}	L _{AF10}	Laf90			
	11:36	45	48	40			
Daytime	12:58	45	46	36			
	14:55	49	50	43			
Evening	21:54	42	44	35			
Night time	23:14	42	45	31			
Night-time	00:32	37	39	28			

Table 10.2.2Summary of Results for Location B

Ambient daytime noise levels at this location were dominated local agricultural activities and distant traffic movements along the Tulla Road. Other noise sources noted including dogs barking and birdsong. Distant road traffic noise typically dictated background noise levels. Ambient (i.e. $L_{Aeq,15min}$) levels were in the range of 45 to 49dB with background noise levels in the range of 36 to 43dB.

Evening noise levels were dictated by distant traffic noise including the Tulla Road. Ambient noise levels were the order of 42 dB $L_{Aeq,15min}$ and with background noise levels the order of 35 dB $L_{A90,15min}$.

Night-time noise levels were influenced by distant road traffic movements along with and wind generated noise on nearby foliage. Ambient noise levels were in the range of 37 to 42 dB with background noise levels were in the range of 28 to 31 dB.

Location C

The survey results for Location C are given in Table 10.2.3.

Start Time		Measured Noise Levels (dB re. 2x10 ⁻⁵ Pa)					
		L _{Aeq}	LAF10	Laf90			
	13:23	53	56	36			
Daytime	14:11	51	54	37			
	15:18	50	54	37			
Evening	22:13	53	57	35			
Night time	23:33	50	54	31			
Night-time	00:51	32	32	31			

Table 10.2.3 Summary of results for Location C

Ambient daytime noise levels at this location were influenced distant traffic movements along the Tulla Road. Other noise sources noted including dogs barking and birdsong. Distant road traffic noise typically dictated background noise levels. Ambient (i.e. L_{Aeq,15min}) levels were in the range of 50 to 51dB with background noise levels in the range of 36 to 37dB.

Evening noise levels were dictated by distant traffic noise including the Tulla Road. Ambient noise levels were the order of 53 dB $L_{Aeq,15min}$ and with background noise levels the order of 35 dB $L_{A90,15min}$.

Night-time noise levels were influenced by distant road traffic movements along with and wind generated noise on nearby foliage. Ambient noise levels were in the range of 32 to 50 dB with background noise levels were the order of 31 dB.

Location D

The survey results for Location D are given in Table 10.2.4.

				-			
Start Time		Measured Noise Levels (dB re. 2x10 ⁻⁵ Pa)					
Start	TIME	LAeq LAF10 LAF5		Laf90			
	12:10	63	68	50			
Daytime	13:48	64	69	52			
	15:40	65	69	56			
Evening	22:35	63	68	45			
Night time	23:55	54	59	31			
Night-time	01:11	45	48	32			

Table 10.2.4Summary of results for Location D

Ambient daytime noise levels at this location were influenced my the M18 and distant traffic movements along the Tulla Road. Other noise sources noted including dogs barking and birdsong and a flowing stream. Distant road traffic noise typically dictated background noise levels. Ambient (i.e. $L_{Aeq,15min}$) levels were in the range of 63 to 65dB with background noise levels in the range of 50 to 56 dB.

Evening noise levels were dictated by the M18 and distant traffic noise including the Tulla Road. Again water flow was noted in a nearby stream. Ambient noise levels were the order of 63 dB $L_{Aeq,15min}$ and with background noise levels the order of 45 dB $L_{A90,15min}$.

Night-time noise levels were influenced by the M18 distant road traffic movements along with and wind generated noise on nearby foliage and the nearby stream. Ambient noise levels were in the range of 45 to 54 dB with background noise levels were the in the range of 31 to 32 dB.

APPENDIX 9.3

NOISE MODELLING DETAILS & ASSUMPTIONS

PREPARED BY AWN CONSULTING LIMITED

Noise Model

A 3D computer-based prediction model has been prepared in order to quantify the noise level associated with the proposed building. This section discusses the methodology behind the noise modelling process.

DGMR iNoise

Proprietary noise calculation software has been used for the purposes of this modelling exercise. The selected software, DGMR iNoise, calculates noise levels in accordance with *ISO 9613: Acoustics – Attenuation of sound during propagation outdoors, Part 2: General method of calculation, 1996.*

DGMR iNoise is a proprietary noise calculation package for computing noise levels in the vicinity of noise sources. iNoise calculates noise levels in different ways depending on the selected prediction standard. In general, however, the resultant noise level is calculated taking into account a range of factors affecting the propagation of sound, including:

- the magnitude of the noise source in terms of A weighted sound power levels (L_{WA});
- the distance between the source and receiver;
- the presence of obstacles such as screens or barriers in the propagation path;
- the presence of reflecting surfaces;
- the hardness of the ground between the source and receiver;
- Attenuation due to atmospheric absorption; and
- Meteorological effects such as wind gradient, temperature gradient and humidity (these have significant impact at distances greater than approximately 400m).

Brief Description of ISO9613-2: 1996

ISO9613-2:1996 calculates the noise level based on each of the factors discussed previously. However, the effect of meteorological conditions is significantly simplified by calculating the average downwind sound pressure level, $L_{AT}(DW)$, for the following conditions:

- wind direction at an angle of ±45° to the direction connecting the centre of the dominant sound source and the centre of the specified receiver region with the wind blowing from source to receiver, and;
- wind speed between approximately 1ms⁻¹ and 5ms⁻¹, measured at a height of 3m to 11m above the ground.

The equations and calculations also hold for average propagation under a well-developed moderate ground-based temperature inversion, such as commonly occurs on clear calm nights.

The basic formula for calculating $L_{AT}(DW)$ from any point source at any receiver location is given by:

$$L_{fT}(DW) = LW + Dc - A$$
 Eqn. A

Where:

$L_{fT}(DW)$ is an octave band centre frequency	component of L _{AT} (DW) in dB relative to 2x10 ⁻⁵ Pa;
---	--

- L_w is the octave band sound power of the point source;
- D_c is the directivity correction for the point source;
- A is the octave band attenuation that occurs during propagation, namely attenuation due to geometric divergence, atmospheric absorption, ground effect, barriers and miscellaneous other effects.

The estimated accuracy associated with this methodology is shown in Table 10.3.1 below:

Height, h [*]	Distance, d [†]					
	0 < d < 100m	100m < d < 1,000m				
0 <h<5m< td=""><td>±3dB</td><td>±3dB</td></h<5m<>	±3dB	±3dB				
5m <h<30m< td=""><td>±1dB</td><td>±3dB</td></h<30m<>	±1dB	±3dB				

 Table 10.3.1
 Estimated Accuracy for Broadband Noise of LAT(DW)

* h is the mean height of the source and receiver. † d is the mean distance between the source and receiver. N.B. These estimates have been made from situations where there are no effects due to reflections or attenuation due to screening.

Input Data and Assumptions

The noise model has been constructed using data from various source as follows:

- *Site Layout* The general site layout has been obtained from the drawings forwarded by Art Datacentres.
- Local Area The location of noise sensitive locations has been obtained from a combination of site drawings provided by Art Datacentres and others obtained from Ordinance Survey Ireland (OSI). A local site inspection was also undertaken.
- Heights The heights of buildings on site have been obtained from site drawings forwarded by Art Datacentres. Off-site buildings have been assumed to be 8m high for houses.
- *Contours* Site ground contours/heights have been obtained from site drawings forwarded by Art Datacentres where available.

The final critical aspect of the noise model development is the inclusion of the various plant noise sources. Details are presented in the following section.

Source Sound Power Data

The noise modelling competed indicates the following limits in relation to various items of plant associated with the overall site development. Plant items will be selected in order to achieve the stated noise levels and or appropriate attenuation will be incorporated into the design of the plant/building in order that the plant noise emission levels are achieved on site (including any system regenerated noise). All plant will be selected such that there are no audible tonal or impulsive noise emissions at noise sensitive locations.

Table 10.3.2 Summary of 3						nergy oe	nue			
		Octave Band Sound Power Level dB Lw								
Item	63	125	250	500	1000	2000	4000	8000	dB(A)	
A – Intake Air (Opening) ¹	97	94	86	80	90	89	86	84	95	
B – Exhaust Stack Outlet ²	100	94	92	86	83	81	82	84	91	
C – Radiator Coolers ³	62	69	72	78	80	76	70	61	83	
D – Roof ⁴	72	70	66	59	51	46	34	31	61	
E – Walls ⁴	70	67	64	57	48	43	31	28	59	
F – Transformers ⁵					82				82	

 Table 10.3.2
 Summary of Sound Power Levels for EIAR Noise Model – Energy Centre

Note 1 75dB(A) at 1m advised. Corrected for estimated louvre opening area of some 10m² per generator in the building. Nine generators per building. A louvre has been assumed at 6m above ground for each generator set on the northern and southern facades of the energy centre building. Total of 32 loruves assumed across the two buildings.

Note 2 Assumed from similar development.

Note 3 62.5dB(A) at 1m advised. Data assumed from CAT data sheet from previous assessment as follows: 25°C ambient

Sound Power	r Spectrum
-------------	------------

Frequency (Hz)	63	125	250	500	1000	2000	4000	8000	Total
Sound Power (LwA)	36	53	63	75	80	77	71	60	83
Sound pressure (Method.	_pA)	:	62.5 at 1m	calculated i	n accordance	e with BS EN	N 13487:20	19 Parallel	Pipe

Note 4 L_w level per m². Based on the 'L_p Level in Hall' assumed for similar assessments as detailed below and the assumption that the roof/walls offers the following sound reduction performance (as advised from a similar project).

		Lp - Octave Band Centre Frequency (Hx) - Linear									
	31.5	63	125	250	500	1000	2000	4000	8000	dB	dB(A)
Total Lp Level in Hall	112	111	107	107	108	106	106	99	96	117	112

Table 3: Minimum Sound Insulation Performance Requirements for Engine Hall Walls and Roof

Description	Insertion Loss (dB) per Octave Band (Hz)										
	31.5	63	125	250	500	1000	2000	4000	8000		
Walls	37	43	42	45	53	60	65	70	70		
Roof	35	41	39	43	51	57	62	67	67		

Example wall and roof constructions capable of achieving the performance specifications outlined in Table 3 are:

- Walls: 215 mm thick solid concrete block
- Roof: 250 mm thick hollowcore concrete planks
- Note 5 2 units in total. Overall L_w level assumed. The following extract from the "EirGrid Evidence Based Environmental Studies Study 8: Noise – Literature review and evidence-based field study on the noise effects of high voltage transmission development (May 2016) states the following in relation to noise impacts associated with 110KvA transformer installations:

"The survey on the 110kV substation at Dunfirth indicated that measured noise levels (L_{Aeq}) were less than 40dB(A) at 5m from each of the boundaries of the substation. This is below the WHO night-time free-field threshold limit of 42dB for preventing effects on sleep and well below the WHO daytime threshold limits for serious and moderate annoyance in outdoor living areas (i.e. 55dB and 50dB respectively). Spectral analysis of the data recorded at this site demonstrated that there were no distinct tonal elements to the recorded noise level. To avoid any noise impacts from 110kV substations at sensitive receptors, it is recommended that a minimum distance of 5m is maintained between 110kV substations and the land boundary of any noise sensitive property."

Assuming the proposed substation installation has comparable noise emissions to the 110kV unit discussed above and considering the distance between the 110kV substation and the nearest off site locations (i.e. >250m) noise from this installation is not predicted to be an issue off site.

Considering the above, it is concluded that there will be no significant noise emissions from the operation of the cable installations or substation. Consequently, there is no requirement to assess any operational noise emissions.

Turne	Description		Octa	ve Ban	d Sound	d Power	· Level o	dB L _w		dB				
Туре	Description	63	125	250	500	1k	2k	4k	8k	L _{wA}				
AHU Note A	AHU Air Intake	70	61	67	56	47	48	56	54	62				
AHU Note A	AHU Air Exhaust	82	72	63	65	56	56	56	56	66				
Chillers Note B	Outdoor Unit	87	89	85	85	80	76	73	64	86				
	Casing Sides	101	100	89	88	85	85	80	85	92				
0, 1, 0, ,	Casing Front	90	90	79	80	78	78	72	72	84				
Standby Generators	Air Intake Rear	95	96	82	67	58	57	64	82	84				
	Breakout Roof	106	105	95	87	84	84	79	82	94				
	Engine Exhaust	102	86	76	75	70	66	59	54	79				

Table 10.3.3 Summary of Sound Power Levels for ETAR Noise Model – Data Ha	Table 10.3.3	Summary of Sound Power Levels for EIAR Noise Model – Data Halls
--	--------------	---

Note A Value per AHU. Detailed in "Example AHU Tech Sub Extract"

Weather louvres offering a sound insertion loss as below assumed in front of the AHU units:

Element		S	ound Insertion	Loss dB – Octa	ve Band Centre	e Frequency (Hz	z)	
	63	125	250	500	1k	2k	4k	8k
Louvre	1	2	2	3	3	3	3	3

Note B Assumed from supplied data sheet Ref: "Mitsubishi chiller - admin area noise levels".

Note C Spectra presented are A weighted. Initial assumption is that generator units have a noise rating of 75dB(A) at 1m. Data has been generated using AWN database assuming generator housing dimensions of 13.5m (L) x 2.5m (W) x 4m (H). Data based on CAT data supplied for other assessments.

Figure 10.3.1 presents a 3D render of the developed site noise model for the current proposals.

Figure 10.3.1 Images of Developed Noise Model – View of Site

Modelling Calculation Parameters¹

Prediction calculations for plant noise have been conducted in accordance with *ISO 9613:* Acoustics – Attenuation of sound during propagation outdoors, Part 2: General method of calculation, 1996.

Ground attenuation factors of 1.0 have been assumed. No metrological corrections were assumed for the calculations. The atmospheric attenuation outlined in Table 10.3.4 has been assumed for all calculations.

Table 10.3.4	Aunospher	Almospheric Allendation Assumed for Noise Calculations (db per km)								
Temp (°C)	% Humidity	Octave Band Centre Frequencies (Hz)								
Temp (°C)	% numially	63	125	250	500	1k	2k	4k	8k	
10	70	0.12	0.41	1.04	1.92	3.66	9.70	33.06	118.4	

 Table 10.3.4
 Atmospheric Attenuation Assumed for Noise Calculations (dB per km)

1

See Appendix 9.5 for further discussion of calculation parameters.

APPENDIX 9.4

INDICATIVE CONSTRUCTION NOISE & VIBRATION MANAGEMENT PLAN

PREPARED BY AWN CONSULTING LIMITED

This Noise and Vibration Management Plan (NVMP) details a 'Best Practice' approach to dealing with potential noise and vibration emissions during the construction phase of the development. The Plan will be adopted by all contractors and sub-contractors involved in construction activities on the site. The Site Manager will ensure that adequate instruction is provided to contractors regarding the noise and vibration control measures contained within this document.

The environmental impact assessment (EIA) Report conducted for the construction activity has highlighted that the construction noise and vibration levels can be controlled to within the adopted criteria. However, mitigation measures should be implemented, where necessary, in order to control impacts to nearby sensitive areas within acceptable levels.

Nearby sensitive properties in the vicinity of the Proposed Development are summarised in Figure 10.5.1 below:

Figure 10.4.1 Sensitive Receptors

Table 10.4.1	Assessment Locations
ID	Description
NSL01	Single storey residences located to the south west of the development site opposite the junction
NSL02	of the access ramp to the M18.
NSL03	Residence located on the opposite side of the R352 (Tulla Road) set back some 80m from the road edge.
NSL04	Closest residential locations along the R352 (Tulla Road) which share a common boundary of the overall proposed development site.
NSL05	Residence located on the opposite side of the R352 (Tulla Road) set back some 80m from the
NSL06	road edge.
NSL07	Closest residential locations along the R352 (Tulla Road) which share a common boundary of the overall proposed development site.
NSL08	Residence located on the opposite side of the R352 (Tulla Road) set back some 70m from the road edge.
NSL09	Residence located on the opposite side of the R352 (Tulla Road) set back some 25m from the road edge.
NSL10	Closest noise sensitive location to the east of the development site.
NSL11	Closest noise sensitive location to the north of the development site.
NSL12	Noise sensitive location within Knockaneen halting site on the opposite side of the M18 to the west of the development site.

Construction Noise Criteria

As referenced in the EIA Report prepared for the Proposed Development, appropriate criteria relating to permissible construction noise levels for a development of this scale may be found in the Transport Infrastructure Ireland (TII) publication *Guidelines for the Treatment of Noise and Vibration in National Road Schemes*² which indicates the following criteria and hours of operation.

Table 10.4.2	Construction Noise Limit Values
--------------	---------------------------------

Dave and Times	Noise Levels (dB re. 2x10-5 Pa)				
Days and Times	LAeq(1hr)	L _{Amax}			
Monday to Friday 07:00hrs to 19:00hrs	70	80			
Monday to Friday 19:00 to 22:00hrs	60*	65*			
Saturdays 08:00hrs to 13:00hrs	65	75			

Note * Construction activity at these times, other than that required for emergency works, will normally require the explicit permission of the relevant local authority.

Construction Vibration Criteria

It is recommended in this EIA Report that vibration from construction activities to off-site residences be limited to the values set out in Table 10.5.3. It should be noted that these limits are not absolute but provide guidance as to magnitudes of vibration that are very unlikely to cause cosmetic damage. Magnitudes of vibration slightly greater than those in the table are normally unlikely to cause cosmetic damage, but construction work creating such magnitudes should proceed with caution. Where there is existing damage these limits may need to be reduced by up to 50%.

Table 10.5.3	able 10.5.3 Construction Vibration Limit Values									
	Allowable vibration (in terms of peak particle velocity) at the closest part of									
sensitive property to the source of vibration, at a frequency of										
Less	s than 10Hz	10 to 50Hz	50 to 100Hz (and above)							
	8 mm/s	12.5 mm/s	20 mm/s							

Table 10.5.3 Construction Vibration Limit Values

Hours of Work

The proposed general construction hours are 07:00 to 18:00hrs, Monday to Friday and 08:00 to 14:00 on Saturdays. However, weekday evening works may also be required from time to time.

Weekday evening activities will be significantly reduced and generally only involve internal activities and concrete pouring which will be required during certain phases of the development. As a result, noise emissions from evening activities are expected to be significantly lower than for other general daytime activities.

Best Practice Guidelines for the Control of Noise & Vibration

BS5228 includes guidance on several aspects of construction site mitigation measures, including, but not limited to:

- selection of quiet plant;
- control of noise sources;
- screening;

² Guidelines for the Treatment of Noise and Vibration in National Road Schemes, Revision 1, 25 October 2004, Transport Infrastructure Ireland

- hours of work;
- liaison with the public, and;
- monitoring.

Detailed comment is offered on these items in the following paragraphs. Noise and vibration control measures that will be considered include the selection of suitable plant, enclosures and screens around noise sources, limiting the hours of work and monitoring.

Selection of Quiet Plant

This practice is recommended in relation to sites with static plant such as compressors and generators. It is recommended that these units be supplied with manufacturers' proprietary acoustic enclosures where possible. The potential for any item of plant to generate noise will be assessed prior to the item being brought onto the site. The least noisy item will be selected wherever possible. If a particular item of plant already on the site be found to generate high noise levels, the first action will be to identify whether or not said item can be replaced with a quieter alternative.

General Comments on Noise Control at Source

If replacing a noisy item of plant is not a viable or practical option, consideration will be given to noise control "at source". This refers to the modification of an item of plant or the application of improved sound reduction methods in consultation with the supplier. For example, resonance effects in panel work or cover plates can be reduced through stiffening or application of damping compounds; rattling and grinding noises can often be controlled by fixing resilient materials in between the surfaces in contact.

BS5228 states that "as far as reasonably practicable sources of significant noise should be enclosed". In applying this guidance, constraints such as mobility, ventilation, access and safety must be taken into account. Items suitable for enclosure include pumps and generators. Demountable enclosures will also be used to screen operatives using hand tools and will be moved around site as necessary.

In practice, a balance may need to be struck between the use of all available techniques and the resulting costs of doing so. As with Ireland's Environmental Protection Act legislation, we propose that the concept of *"best available techniques not entailing excessive cost"* (BATNEEC) be adopted. Furthermore, proposed noise control techniques should be evaluated in light of their potential effect on occupational safety etc.

BS5228 makes a number of recommendations in relation to "use and siting of equipment". These are all directly relevant and hence are reproduced in full. These recommendations will be adopted on site.

"Plant should always be used in accordance with manufacturers' instructions. Care should be taken to site equipment away from noise-sensitive areas. Where possible, loading and unloading should also be carried out away from such areas. Special care will be necessary when work has to be carried out at night.

Circumstances can arise when night-time working is unavoidable. Bearing in mind the special constraints under which such work has to be carried out, steps should be taken to minimise disturbance to occupants of nearby premises.

Machines such as cranes that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum. Machines should not be left running unnecessarily, as this can be noisy and waste energy. Plant known to emit noise strongly in one direction should, when possible, be orientated so that the noise is directed away from noise-sensitive areas. Attendant operators of the plant can also benefit from this acoustical phenomenon by sheltering, when possible, in the area with reduced noise levels.

Acoustic covers to engines should be kept closed when the engines are in use and idling. The use of compressors that have effective acoustic enclosures and are designed to operate when their access panels are closed is recommended. Materials should be lowered whenever practicable and should not be dropped. The surfaces on to which the materials are being moved could be covered by resilient material."

All items of plant should be subject to regular maintenance. Such maintenance can prevent unnecessary increases in plant noise and can serve to prolong the effectiveness of noise control measures.

Screening

Typically, screening is an effective method of reducing the noise level at a receiver location and can be used successfully as an additional measure to all other forms of noise control. The effectiveness of a noise screen will depend on the height and length of the screen and its position relative to both the source and receiver.

The length of the screen should in practice be at least five times the height, however, if shorter sections are necessary then the ends of the screen should be bent around the source. The height of any screen should be such that there is no direct line of sight between the source and the receiver.

BS5228 states that on level sites the screen should be placed as close as possible to either the source or the receiver. The construction of the barrier should be such that there are no gaps or openings at joints in the screen material. In most practical situations the effectiveness of the screen is limited by the sound transmission over the top of the barrier rather than the transmission through the barrier itself. In practice screens constructed of materials with a mass per unit of surface area greater than 7 kg/m² will give adequate sound insulation performance.

In addition, careful planning of the site layout should also be considered. The placement of site buildings such as offices and stores and in some instances, materials such as topsoil or aggregate can provide a degree of noise screening if placed between the source and the receiver.

Vibration

The vibration from construction activities will be limited to the values set out in Table 2. It should be noted that these limits are not absolute but provide guidance as to magnitudes of vibration that are very unlikely to cause cosmetic damage. Magnitudes of vibration slightly greater than those in the table are normally unlikely to cause cosmetic damage, but construction work creating such magnitudes should proceed with caution. Where there is existing damage, these limits may need to be reduced by up to 50%.

Liaison with the Public

The Contractor will provide proactive community relations and will notify the public and sensitive premises before the commencement of any works forecast to generate appreciable levels of noise or vibration, explaining the nature and duration of the works. The Contractor

will distribute information circulars informing people of the progress of works and any likely periods of significant noise and vibration.

A designated noise liaison should be appointed to site during construction works. Any complaints should be logged and followed up in a prompt fashion. In addition, prior to particularly noisy construction activity, e.g. rock breaking, piling, etc., the site contact should inform the nearest noise sensitive locations of the time and expected duration of the works.

Noise Monitoring

During the construction phase noise monitoring at the nearest sensitive locations will be carried out during periods where significant levels of noise are expected at noise sensitive locations.

Noise monitoring should be conducted in accordance with the International Standard ISO 1996: 2017: *Acoustics – Description, measurement and assessment of environmental noise* and be located a distance of greater than 3.5m away from any reflective surfaces, e.g. walls, in order to ensure a free-field measurement without any influence from reflected noise sources.

Vibration Monitoring

During the construction phase vibration monitoring where significant levels of vibration are expected at sensitive locations.

Vibration monitoring should be conducted in accordance with BS7385-1 (1990) *Evaluation* and measurement for vibration in buildings — Part 1: Guide for measurement of vibrations and evaluation of their effects on buildings or BS6841 (1987) Guide to measurement and evaluation of human exposure to whole-body mechanical vibration and repeated shock.

The mounting of the transducer to the vibrating structure should comply with BS ISO 5348:1998 *Mechanical vibration and shock – Mechanical mounting of accelerometers*. In summary, the following ideal mounting conditions apply:

- the transducer and its mountings are as rigid as possible;
- the mounting surfaces should be as clean and flat as possible;
- simple symmetric mountings are best, and;
- the mass of the mounting should be small in comparison to that of the structure under test.

In general, the transducer will be fixed to the floor of a building or concrete base on the ground using expansion bolts. In instances where the vibration monitor will be placed outside of a building a flat and level concrete base with dimensions of approximately 1m x 1m x 0.1m will be required.

APPENDIX 9.5

NOISE MODEL PARAMETERS

PREPARED BY AWN CONSULTING LIMITED

Prediction calculations for noise emissions have been conducted in accordance with *ISO* 9613: Acoustics – Attenuation of sound during propagation outdoors, Part 2: General method of calculation, 1996. The following are the main aspects that have been considered in terms of the noise predictions presented in this instance.

- Directivity Factor. The directivity factor (D) allows for an adjustment to be made where the sound radiated in the direction of interest is higher than that for which the sound power level is specified. In this case the sound power level is measures in a down wind direction, corresponding to the worst-case propagation conditions and needs no further adjustment.
- Ground Effect: Ground effect is the result of sound reflected by the ground interfering with the sound propagating directly from source to receiver. The prediction of ground effects is inherently complex and depend on source height receiver height propagation height between the source and receiver and the ground conditions. The around conditions are described according to a variable defined as G, which varies between 0.0 for hard ground (including paving, ice concrete) and 1.0 for soft ground (includes ground covered by grass trees or other vegetation) Our predictions have been carried out using various source height specific to each plant item, a receiver heights of 1.6m for single storey properties and 4m for double. An assumed ground factor of G = 1.0 has been applied off site. Noise contours presented in the assessment have been predicted to a height of 4m in all instances. For construction noise predictions have been made at a level of 1.6m as these activities will not occur at night.
- *Geometrical Divergence* This term relates to the spherical spreading in the free-field from a point sound source resulting in attenuation depending on distance according to the following equation:

 $A_{geo} = 20 \times \log (distance from source in meters) + 11$

Atmospheric Absorption Sound propagation through the atmosphere is attenuated by the conversion of the sound energy into heat. This attenuation is dependent on the temperature and relative humidity of the air through which the sound is travelling and is frequency dependent with increasing attenuation towards higher frequencies. In these predictions a temperature of 10°C and a relative humidity of 70% have been used, which give relativity low levels of atmosphere attenuation and corresponding worst case noise predictions.

Table 10.5.1	Atmospheric Attenuation Assumed for Noise Calculations (dB	per km))
--------------	--	----	---------	---

Temp	%		Octave Band Centre Frequencies (Hz)							
(°C)	Humidity	63	125	250	500	1k	2k	4k	8k	
10	70	0.12	0.41	1.04	1.92	3.66	9.70	33.06	118.4	

Barrier Attenuation The effect of any barrier between the noise source and the receiver position is that noise will be reduced according to the relative heights of the source, receiver and barrier and the frequency spectrum of the noise.

APPENDIX 10.1

LVIA SECONDARY VEIWPOINTS

.

Viewpoint A - R352 at Tullyvoghan junction

The intervening hill will block views of the proposed development. Although there are views towards the site, between the road and the electricity line, there are no proposed buildings located within this southern part of the site.

Viewpoint B - R352, at entrance to Rath Ban Housing Development

This view demonstrates that intervening landforms and vegetation will screen views of the proposed development from this location and surrounding area.

Viewpoint C - Junction of L 4608 (Ballymacahil Road) and R352, and opposide side of R352

This view demonstrates that intervening built forms and vegetation will screen views of the proposed development from this location and surrounding area.

Viewpoint D - Within Rath Ban Housing Development - centre section, at the eastern extreme of the development

This view demonstrates that boundary fencing and intervening vegetation adjacent to the eastern edge of development will screen views of the proposed development from this location.

Viewpoint E - Within Rath Ban Housing Development - Northern end section, at the eastern extreme of the development

This view demonstrates that intervening vegetation adjacent to the eastern edge of development will screen views of the proposed development from this location.

Viewpoint F - Ballymachill Road

This view is taken from a field gateway forming a break in the roadside hedgerow thereby allowing more open distant views. The view demonstrates that at the very least intervening vegetation will restrict visibility of the proposed development.

Viewpoint G - Gort Leamhain Housing Development , Eastern extreme of the development

The view demonstrates that boundary walls combined with intervening vegetation will screen views towards the proposed development from this location and the surrounding area.

Viewpoint H - Knockanean National School

The view is taken from the track to the east of the school and towards the rear of the school. It demonstrates that intervening vegetation will screen views towards the proposed development from this location and the surrounding area.

Viewpoint I - Cappagh Beg

The view demonstrates that intervening hedgerow vegetation will screen views towards the proposed development from this location and the surrounding area.

Viewpoint J - Cappagh Beg

The view is taken from Google Streetview as it was not possible to safely take a photograph from the motorway. The view demonstrates that intervening vegetation will at least restrict views towards the proposed development.

Viewpoint K - M18, at Rail line Passover

The view is taken from Google Streetview as it was not possible to safely take a photograph from the motorway. The view demonstrates that intervening vegetation will screen towards the proposed development.

Viewpoint L - R469 (Quin Road), at Fergus River

The view demonstrates that intervening trees along the eastern riverbank will screen towards the proposed development.

Viewpoint M - N85, at Railway Line

The view demonstrates that intervening that blocks of woodland to the east of the Fergus River will screen towards the proposed development.

APPENDIX 11.1

LEGISLATION PROTECTING THE ARCHAEOLOGICAL RESOURCE IAC

Protection of Cultural Heritage

The cultural heritage in Ireland is safeguarded through national and international policy designed to secure the protection of the cultural heritage resource to the fullest possible extent (Department of Arts, Heritage, Gaeltacht, and the Islands 1999, 35). This is undertaken in accordance with the provisions of the *European Convention on the Protection of the Archaeological Heritage* (Valletta Convention), ratified by Ireland in 1997.

The Archaeological Resource

The National Monuments Act 1930 to 2014 and relevant provisions of the National Cultural Institutions Act 1997 are the primary means of ensuring the satisfactory protection of archaeological remains, which includes all man-made structures of whatever form or date except buildings habitually used for ecclesiastical purposes. A National Monument is described as 'a monument or the remains of a monument the preservation of which is a matter of national importance by reason of the historical, architectural, traditional, artistic or archaeological interest attaching thereto' (National Monuments Act 1930 Section 2). A number of mechanisms under the National Monuments Act are applied to secure the protection of archaeological monuments. These include the Register of Historic Monuments, the Record of Monuments and Places, and the placing of Preservation Orders and Temporary Preservation Orders on endangered sites.

Ownership and Guardianship of National Monuments

The Minister may acquire national monuments by agreement or by compulsory order. The state or local authority may assume guardianship of any national monument (other than dwellings). The owners of national monuments (other than dwellings) may also appoint the Minister or the local authority as guardian of that monument if the state or local authority agrees. Once the site is in ownership or guardianship of the state, it may not be interfered with without the written consent of the Minister.

Register of Historic Monuments

Section 5 of the 1987 Act requires the Minister to establish and maintain a Register of Historic Monuments. Historic monuments and archaeological areas present on the register are afforded statutory protection under the 1987 Act. Any interference with sites recorded on the register is illegal without the permission of the Minister. Two months' notice in writing is required prior to any work being undertaken on or in the vicinity of a registered monument. The register also includes sites under Preservation Orders and Temporary Preservation Orders. All registered monuments are included in the Record of Monuments and Places.

Preservation Orders and Temporary Preservation Orders

Sites deemed to be in danger of injury or destruction can be allocated Preservation Orders under the 1930 Act. Preservation Orders make any interference with the site illegal. Temporary Preservation Orders can be attached under the 1954 Act. These perform the same function as a Preservation Order but have a time limit of six months, after which the situation must be reviewed. Work may only be undertaken on or in the vicinity of sites under Preservation Orders with the written consent, and at the discretion, of the Minister.

Record of Monuments and Places

Section 12(1) of the 1994 Act requires the Minister for Arts, Heritage, Gaeltacht, and the Islands (now the Minister for the Department of Housing, Local Government, and Heritage) to establish and maintain a record of monuments and places where the Minister believes that such monuments exist. The record comprises a list of monuments and relevant places and a map/s showing each monument and relevant place in respect of each county in the

state. All sites recorded on the Record of Monuments and Places receive statutory protection under the National Monuments Act 1994. All recorded monuments on the proposed development site are represented on the accompanying maps.

Section 12(3) of the 1994 Act provides that 'where the owner or occupier (other than the Minister for Arts, Heritage, Gaeltacht and the Islands) of a monument or place included in the Record, or any other person, proposes to carry out, or to cause or permit the carrying out of, any work at or in relation to such a monument or place, he or she shall give notice in writing to the Minister of Arts, Heritage, Gaeltacht and the Islands to carry out work and shall not, except in case of urgent necessity and with the consent of the Minister, commence the work until two months after giving of notice'.

Under the National Monuments (Amendment) Act 2004, anyone who demolishes or in any way interferes with a recorded site is liable to a fine not exceeding \in 3,000 or imprisonment for up to 6 months. On summary conviction and on conviction of indictment, a fine not exceeding \in 10,000 or imprisonment for up to 5 years is the penalty. In addition, they are liable for costs for the repair of the damage caused.

In addition to this, under the *European Communities (Environmental Impact Assessment) Regulations 1989,* Environmental Impact Statements (EIS) are required for various classes and sizes of development project to assess the impact the proposed development will have on the existing environment, which includes the cultural, archaeological, and built heritage resources. These document's recommendations are typically incorporated into the conditions under which the proposed development must proceed, and thus offer an additional layer of protection for monuments which have not been listed on the RMP.

The Planning and Development Act 2000

Under planning legislation, each local authority is obliged to draw up a Development Plan setting out their aims and policies with regard to the growth of the area over a five-year period. They cover a range of issues including archaeology and built heritage, setting out their policies and objectives with regard to the protection and enhancement of both. These policies can vary from county to county. The Planning and Development Act 2000 recognises that proper planning and sustainable development includes the protection of the archaeological heritage. Conditions relating to archaeology may be attached to individual planning permissions.

Clare County Development Plan, 2017-2023 It is an objective:

CDP15.8

- a. To safeguard sites, features and objects of archaeological interest generally;
- b. To secure the preservation (i.e. preservation in situ or in exceptional cases preservation by record) of all archaeological monuments included in the Record of Monuments and Places as established under Section 12 of the National Monuments (Amendment) Act, 1994, and of sites, features and objects of archaeological and historical interest generally (in securing such preservation, the Council will have regard to the advice and recommendations of the Department of the Arts, Heritage, Regional, Rural and Gaeltacht Affairs);
- c. To permit development only where the Planning Authority is satisfied that the proposals will not interfere with: items of archaeological or historical importance; the areas in the vicinity of archaeological sites; the appreciation or the study of such items.

- d. To have regard to the government publication 'Framework and Principles for the Protection of the Archaeological Heritage 1999' in relation to protecting sites, features and objects of archaeological interest;
- e. To advocate for greater financial assistance for the maintenance and improvement of features of archaeological interests in County Clare.

CDP15.9

To protect and preserve archaeological sites discovered since the publication of the Record of Monuments and Places.

CDP15.10

To protect the Zones of Archaeological Potential located within both urban and rural areas as identified in the Record of Monuments and Places.

CDP15.11

To have regard to archaeological concerns when considering proposed service schemes (including electricity, sewerage, telecommunications and water supply) and proposed roadworks (both realignments and new roads) located in close proximity to Recorded Monuments and Places and Zones of Archaeological Potential.

CDP15.12

- a. To raise awareness of and improve practice in relation to archaeology in County Clare. Guidance material will be produced setting out the requirements for archaeological protection in the County;
- b. To promote the care and conservation of historic graveyards throughout the County.

CDP15.13

- a. To protect and preserve the archaeological value of underwater archaeological sites in rivers, lakes, intertidal and sub-tidal environments;
- b. To support the further exploration of the underwater archaeology of County Clare, including the San Marcos project, and any subsequent projects that may arise during the lifetime of this Plan.

APPENDIX 11.2

Legislation Protecting The Architectural Resource

The main laws protecting the built heritage are the Architectural Heritage (National Inventory) and National Monuments (Miscellaneous Provisions) Act 1999 and the Local Government (Planning and Development) Acts 1963–1999, which has now been superseded by the Planning and Development Act, 2000. The Architectural Heritage Act requires the Minister to establish a survey to identify, record and assess the architectural heritage of the country. The background to this legislation derives from Article 2 of the 1985 Convention for the Protection of Architectural Heritage (Granada Convention). This states that:

For the purpose of precise identification of the monuments, groups of structures and sites to be protected, each member state will undertake to maintain inventories of that architectural heritage.

The National Inventory of Architectural Heritage (NIAH) was established in 1990 to fulfil Ireland's obligation under the Granada Convention, through the establishment and maintenance of a central record, documenting and evaluating the architecture of Ireland (NIAH Handbook 2005:2). As inclusion in the inventory does not provide statutory protection, the survey information is used in conjunction with the *Architectural Heritage Protection Guidelines for Planning Authorities* to advise local authorities on compilation of a Record of Protected Structures as required by the *Planning and Development Act, 2000*.

Protection Under the Record of Protected Structures and County Development Plan

Structures of architectural, cultural, social, scientific, historical, technical, or archaeological interest can be protected under the Planning and Development Act, 2000, where the conditions relating to the protection of the architectural heritage are set out in Part IV of the act. This act superseded the Local Government (Planning and Development) Act, 1999, and came into force on 1st January 2000.

The act provides for the inclusion of Protected Structures into the planning authorities' development plans and sets out statutory regulations regarding works affecting such structures. Under new legislation, no distinction is made between buildings formerly classified under development plans as List 1 and List 2. Such buildings are now all regarded as 'Protected Structures' and enjoy equal statutory protection. Under the act the entire structure is protected, including a structure's interior, exterior, attendant grounds and also any structures within the attendant grounds.

The act defines a Protected Structure as (a) a structure, or (b) a specified part of a structure which is included in a Record of Protected Structures (RPS), and, where that record so indicates, includes any specified feature which is in the attendant grounds of the structure and which would not otherwise be included in this definition. Protection of the structure, or part thereof, includes conservation, preservation, and improvement compatible with maintaining its character and interest. Part IV of the act deals with architectural heritage, and Section 57 deals specifically with works affecting the character of Protected Structures or proposed Protected Structures and states that no works should materially affect the character of the structure or any element of the structure that contributes to its special architectural, historical, archaeological, artistic, cultural, scientific, social or technical interest. The act does not provide specific criteria for assigning a special interest to a structure; however, the National Inventory of Architectural Heritage (NIAH) offers guidelines to its field workers as to how to designate a building with a special interest, which are not mutually exclusive. This offers guidance by example rather than by definition:

Archaeological

It is to be noted that the NIAH is biased towards post-1700 structures. Structures that have archaeological features may be recorded, providing the archaeological features are incorporated within post-1700 elements. Industrial fabric is considered to have technical significance and should only be attributed archaeological significance if the structure has pre-1700 features.

Architectural

A structure may be considered of special architectural interest under the following criteria:

- Good quality or well executed architectural design;
- The work of a known and distinguished architect, engineer, designer, craftsman;
- A structure that makes a positive contribution to a setting, such as a streetscape or rural setting;
- Modest or vernacular structures may be considered to be of architectural interest, as they are part of the history of the built heritage of Ireland; and
- Well-designed decorative features, externally and/or internally.

Historical

A structure may be considered of special historical interest under the following criteria:

- A significant historical event associated with the structure;
- An association with a significant historical figure;
- Has a known interesting and/or unusual change of use, e.g. a former workhouse now in use as a hotel; and
- A memorial to a historical event.

Technical

A structure may be considered of special technical interest under the following criteria:

- Incorporates building materials of particular interest, i.e. the materials or the technology used for construction;
- It is the work of a known or distinguished engineer;
- Incorporates innovative engineering design, e.g. bridges, canals, or mill weirs;
- A structure which has an architectural interest may also merit a technical interest due to the structural techniques used in its construction, e.g. a curvilinear glasshouse, early use of concrete, cast-iron prefabrication; and
- Mechanical fixtures relating to a structure may be considered of technical significance.

Cultural

A structure may be considered of special cultural interest under the following criteria:

• An association with a known fictitious character or event, e.g. Sandycove Martello Tower, which featured in Ulysses; and

• Other structure that illustrate the development of society, such as early schoolhouses, swimming baths or printworks.

Scientific

A structure may be considered of special scientific interest under the following criteria:

• A structure or place which is considered to be an extraordinary or pioneering scientific or technical achievement in the Irish context, e.g. Mizen Head Bridge, Birr Telescope.

Social

A structure may be considered of special social interest under the following criteria:

- A focal point of spiritual, political, national, or other cultural sentiment to a group of people, e.g. a place of worship, a meeting point, assembly rooms;
- Developed or constructed by a community or organisation, e.g. the construction of the railways or the building of a church through the patronage of the local community; and
- Illustrates a particular lifestyle, philosophy, or social condition of the past, e.g. the hierarchical accommodation in a country house, philanthropic housing, vernacular structures.

Artistic

A structure may be considered of special artistic interest under the following criteria:

- Work of a skilled craftsman or artist, e.g. plasterwork, wrought-iron work, carved elements or details, stained glass, stations of the cross; and
- Well-designed mass-produced structures or elements may also be considered of artistic interest.

(From the NIAH Handbook 2003 & 2005 pages 15–20)

The Local Authority has the power to order conservation and restoration works to be undertaken by the owner of the protected structure if it considers the building to need repair. Similarly, an owner or developer must make a written request to the Local Authority to carry out any works on a protected structure and its environs, which will be reviewed within three months of application. Failure to do so may result in prosecution.

Clare County Development Plan, 2017-2023 It is an objective:

CDP15.1

- a. To ensure the protection of the architectural heritage of County Clare through the identification of Protected Structures, the designation of Architectural Conservation Areas, the safeguarding of historic gardens, and the recognition of structures and elements that contribute positively to the vernacular and industrial heritage of the County;
- b. To ensure that the architectural heritage of the County is not damaged either through direct destruction or by unsympathetic developments nearby.

CDP15.2

- a. To protect, as set out in the Record of Protected Structures, all structures and their settings, which are of special architectural, historical, archaeological, artistic, cultural, scientific, social, or technical interest;
- b. To review the Record of Protected Structures periodically and add structures of special interest as appropriate, including significant elements of industrial, maritime or vernacular heritage and any twentieth century structures of merit.

CDP15.3

To protect and preserve buildings and features of industrial heritage such as mills, bridges, lighthouses, harbours, etc. Proposals for refurbishment works to, or redevelopment/ conversion of, these sites will be subject to a full architectural and archaeological assessment.

CDP15.4

- a. To seek the retention, appreciation and appropriate revitalisation of the vernacular heritage of County Clare, in both towns and rural areas, by deterring the replacement of good quality vernacular buildings with modern structures and by protecting (through the use of ACAs and the RPS and in the normal course of Development Management) vernacular buildings where they contribute to the character of an area or town and/or where they are rare examples of a structure type;
- b. To support proposals to refurbish vernacular structures that are in a run-down or derelict condition, provided that:
- Appropriate traditional building materials and methods are used to carry out repairs to the historic fabric;
- Proposals for extensions to vernacular structures are reflective and proportionate to the existing building and do not erode the setting and design qualities of the original structure which make it attractive;

While direction for the design should be taken from the historic building stock of the area, it can be expressed in contemporary architectural language.

CDP15.5

- a. To ensure that new developments within or adjacent to an ACA respect the context of the area and contribute positively to the ACA in terms of design, scale, setting and material finishes;
- b. To protect existing buildings, structures, groups of structures, sites, landscapes and features such as street furniture and paving, which are considered to be intrinsic elements of the special character of the ACA, from demolition or removal and nonsympathetic alterations;
- c. To ensure that all new signage, lighting, advertising and utilities to buildings within an ACA are designed, constructed and located in a manner that is complementary to the character of the ACA;
- d. To ensure that external colour schemes in ACAs enhance the character and amenities of the area and reflect traditional colour schemes.

CDP15.7

a. To advocate for greater financial assistance for the maintenance and improvement of architectural heritage in County Clare;

b. To provide advice and guidance to community groups, owners and occupiers with regard to the maintenance and repair of buildings and structures of architectural heritage importance.

APPENDIX 11.3

IMPACT ASSESSMENT AND THE CULTURAL HERITAGE RESOURCE

Potential Impacts on Archaeological and Historical Remains

Impacts are defined as 'the degree of change in an environment resulting from a development' (Environmental Protection Agency 2017). They are described as profound, significant, or slight impacts on archaeological remains. They may be negative, positive, or neutral, direct, indirect, or cumulative, temporary, or permanent.

Impacts can be identified from detailed information about a project, the nature of the area affected, and the range of archaeological and historical resources potentially affected. Development can affect the archaeological and historical resource of a given landscape in a number of ways:

- Permanent and temporary land-take, associated structures, landscape mounding, and their construction may result in damage to or loss of archaeological remains and deposits, or physical loss to the setting of historic monuments and to the physical coherence of the landscape;
- Archaeological sites can be affected adversely in a number of ways: disturbance by excavation, topsoil stripping and the passage of heavy machinery; disturbance by vehicles working in unsuitable conditions; or burial of sites, limiting accessibility for future archaeological investigation;
- Hydrological changes in groundwater or surface water levels can result from construction activities such as de-watering and spoil disposal, or longer-term changes in drainage patterns. These may desiccate archaeological remains and associated deposits;
- Visual impacts on the historic landscape sometimes arise from construction traffic and facilities, built earthworks and structures, landscape mounding and planting, noise, fences, and associated works. These features can impinge directly on historic monuments and historic landscape elements as well as their visual amenity value;
- Landscape measures such as tree planting can damage sub-surface archaeological features, due to topsoil stripping and through the root action of trees and shrubs as they grow;
- Ground consolidation by construction activities or the weight of permanent embankments can cause damage to buried archaeological remains, especially in colluviums or peat deposits; and
- Disruption due to construction also offers in general the potential for adversely affecting archaeological remains. This can include machinery, site offices, and service trenches.

Although not widely appreciated, positive impacts can accrue from developments. These can include positive resource management policies, improved maintenance and access to archaeological monuments, and the increased level of knowledge of a site or historic landscape as a result of archaeological assessment and fieldwork.

Predicted Impacts

The severity of a given level of land-take or visual intrusion varies with the type of monument, site or landscape features and its existing environment. Severity of impact can be judged taking the following into account:

- The proportion of the feature affected and how far physical characteristics fundamental to the understanding of the feature would be lost;
- Consideration of the type, date, survival/condition, fragility/vulnerability, rarity, potential and amenity value of the feature affected; and
- Assessment of the levels of noise, visual and hydrological impacts, either in general or site-specific terms, as may be provided by other specialists.

APPENDIX 11.4

MITIGATION MEASURES AND THE CULTURAL HERITAGE RESOURCE

Potential Mitigation Strategies For Cultural Heritage Remains

Mitigation is defined as features of the design or other measures of the proposed development that can be adopted to avoid, prevent, reduce, or offset negative effects.

The best opportunities for avoiding damage to archaeological remains or intrusion on their setting and amenity arise when the site options for the development are being considered. Damage to the archaeological resource immediately adjacent to developments may be prevented by the selection of appropriate construction methods. Reducing adverse effects can be achieved by good design, for example by screening historic buildings or upstanding archaeological monuments or by burying archaeological sites undisturbed rather than destroying them. Offsetting adverse effects is probably best illustrated by the full investigation and recording of archaeological sites that cannot be preserved *in situ*.

Definition of Mitigation Strategies

Archaeological Resource

The ideal mitigation for all archaeological sites is preservation *in situ*. This is not always a practical solution. Therefore, a series of recommendations are offered to provide ameliorative measures where avoidance and preservation *in situ* are not possible.

Archaeological Test Trenching can be defined as 'a limited programme of intrusive fieldwork which determines the presence or absence of archaeological features, structures, deposits, artefacts or ecofacts within a specified area or site on land, inter-tidal zone or underwater. If such archaeological remains are present field evaluation defines their character, extent, quality, and preservation, and enables an assessment of their worth in a local, regional, national or international context as appropriate' (CIFA 2014a).

Full Archaeological Excavation can be defined as 'a programme of controlled, intrusive fieldwork with defined research objectives which examines, records and interprets archaeological deposits, features and structures and, as appropriate, retrieves artefacts, ecofacts and other remains within a specified area or site on land, inter-tidal zone or underwater. The records made and objects gathered during fieldwork are studied and the results of that study published in detail appropriate to the project design' (CIfA 2014b).

Archaeological Monitoring can be defined as 'a formal programme of observation and investigation conducted during any operation carried out for non-archaeological reasons. This will be within a specified area or site on land, inter-tidal zone or underwater, where there is a possibility that archaeological deposits may be disturbed or destroyed. The programme will result in the preparation of a report and ordered archive (ClfA 2014c).

Underwater Archaeological Assessment consists of a programme of works carried out by a specialist underwater archaeologist, which can involve wade surveys, metal detection surveys and the excavation of test pits within the sea or riverbed. These assessments are able to access and assess the potential of an underwater environment to a much higher degree than terrestrial based assessments.

Architectural Resource

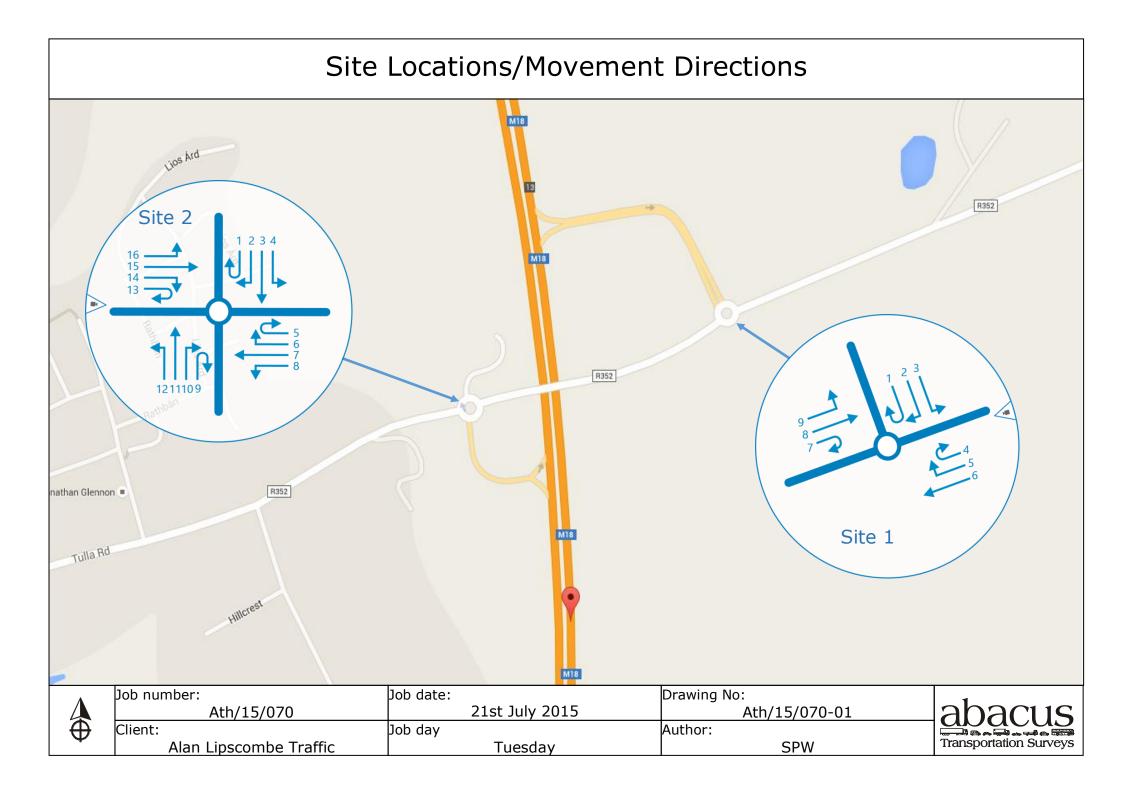
The architectural resource is generally subject to a greater degree of change than archaeological sites, as structures may survive for many years, but their usage may change continually. This can be reflected in the fabric of the building, with the addition and removal of doors, windows, and extensions. Due to their often more visible presence within the landscape than archaeological sites, the removal of such structures can sometimes leave a

discernable 'gap' with the cultural identity of a population; however, a number of mitigation measures are available to ensure a record is made of any structure that is deemed to be of special interest, which may be removed or altered as part of a proposed development.

Conservation Assessment consists of a detailed study of the history of a building and can include the surveying of elevations to define the exact condition of the structure. These assessments are carried out by Conservation Architects and would commonly be carried out in association with proposed alterations or renovations on a Recorded Structure.

Building Survey may involve making an accurate record of elevations (internal and external), internal floor plans and external sections. This is carried out using an EDM (Electronic Distance Measurer) and GPS technology to create scaled drawings that provide a full record of the appearance of a building at the time of the survey.

Historic Building Assessment is generally specific to one building, which may have historic significance, but is not a Protected Structure or listed within the NIAH. A full historical background for the structure is researched and the site is visited to assess the standing remains and make a record of any architectural features of special interest. These assessments can also be carried out in conjunction with a building survey.


Written and Photographic record provides a basic record of features such as stone walls, which may have a small amount of cultural heritage importance and are recorded for prosperity. Dimensions of the feature are recorded with a written description and photographs as well as some cartographic reference, which may help to date a feature.

APPENDIX 12.1

CLASSIFIED TURNING COUNT SURVEY DATA

ALAN LIPSCOMBE TRAFFIC AND TRANSPORT

East Clare Roundabout and the Tulla Road West Roundabout, AM (07:00 – 10:00) and PM (16:00 – 19:00) peak periods, Tuesday 21^{st} July, 2015 (ABACUS Ltd)

REF: Ath/15/070 - Ennis

SITE: 1

DAY:	Tuesday
DATE:	21st July 2015

		мо	VEMEN	NT 1					мс	VEME	NT 2					мо	VEMEN	IT 3			
TIME	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU
7:00	0	0	0	0	0	0	0	4	0	0	0	0	4	4	1	0	0	1	0	2	3
7:15	0	0	0	0	0	0	0	3	2	1	0	0	6	7	1	0	1	0	0	2	3
7:30	0	0	0	0	0	0	0	6	2	0	0	0	8	8	6	1	0	0	0	7	7
7:45	2	0	0	0	0	2	2	7	6	0	0	0	13	13	4	0	0	0	0	4	4
8:00	0	0	0	0	0	0	0	10	1	0	0	1	12	13	2	0	0	0	0	2	2
8:15	0	0	0	0	0	0	0	8	2	0	0	0	10	10	0	0	0	0	0	0	0
8:30	0	0	0	0	0	0	0	25	3	0	0	0	28	28	0	0	0	0	0	0	0
8:45	0	0	0	0	0	0	0	15	1	1	0	0	17	18	3	3	0	0	0	6	6
9:00	0	0	0	0	0	0	0	11	2	0	0	0	13	13	2	1	0	0	0	3	3
9:15	0	0	0	0	0	0	0	11	3	1	0	0	15	16	1	1	0	0	0	2	2
9:30	0	0	0	0	0	0	0	15	5	0	0	0	20	20	0	0	0	0	0	0	0
9:45	0	0	0	0	0	0	0	17	4	4	0	0	25	27	4	1	0	0	0	5	5
н/тот	0	0	0	0	0	0	0	58	7	1	0	1	67	69	5	3	0	0	0	8	8

		мо	VEMEN	NT 1					мо	VEME	NT 2					мо	VEMEN	IT 3			
TIME	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU
16:00	0	1	0	0	0	1	1	12	0	0	0	0	12	12	3	0	0	0	0	3	3
16:15	0	0	0	0	0	0	0	7	5	0	0	1	13	14	2	0	2	0	0	4	5
16:30	0	0	0	0	0	0	0	9	1	0	0	1	11	12	4	2	0	0	0	6	6
16:45	0	0	0	0	0	0	0	4	1	1	0	0	6	7	7	0	0	0	0	7	7
17:00	0	0	0	0	0	0	0	9	3	0	0	0	12	12	1	0	0	0	0	1	1
17:15	0	0	0	0	0	0	0	15	0	0	0	1	16	17	4	1	0	0	0	5	5
17:30	0	0	0	0	0	0	0	15	2	0	0	0	17	17	5	0	1	0	0	6	7
17:45	3	0	0	0	0	3	3	14	1	0	0	0	15	15	3	2	1	0	0	6	7
18:00	0	0	0	0	0	0	0	15	1	0	0	0	16	16	6	1	0	0	0	7	7
18:15	0	0	0	0	0	0	0	5	3	0	0	0	8	8	7	0	0	0	0	7	7
18:30	1	0	0	0	0	1	1	9	2	0	0	2	13	15	4	0	0	0	0	4	4
18:45	0	0	0	0	0	0	0	14	0	0	0	0	14	14	3	1	0	0	0	4	4
н/тот	3	0	0	0	0	3	3	53	6	0	0	1	60	61	13	3	2	0	0	18	19

REF: Ath/15/070 - Ennis

SITE: 1

DAY:	Tuesday
DATE:	21st July 2015

		мс	VEMEN	NT 4					мс	VEME	NT 5					мо	VEMEN	IT 6			
TIME	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU
7:00	0	0	0	0	0	0	0	2	2	0	0	0	4	4	9	1	1	0	0	11	12
7:15	0	0	0	0	0	0	0	3	1	0	0	0	4	4	8	6	1	0	0	15	16
7:30	0	0	0	0	0	0	0	10	2	0	0	0	12	12	22	10	3	0	0	35	37
7:45	0	0	0	0	0	0	0	7	1	0	0	0	8	8	27	4	1	0	0	32	33
8:00	1	0	0	0	0	1	1	7	0	2	0	0	9	10	24	3	0	0	0	27	27
8:15	0	0	0	0	0	0	0	5	0	1	0	0	6	7	35	2	1	1	0	39	41
8:30	0	0	0	0	0	0	0	13	0	0	0	0	13	13	23	7	2	1	0	33	35
8:45	0	0	0	0	0	0	0	7	0	1	0	0	8	9	54	3	1	2	0	60	63
9:00	0	0	0	0	0	0	0	7	1	0	0	0	8	8	35	4	0	0	0	39	39
9:15	0	0	0	0	0	0	0	3	1	0	0	0	4	4	42	4	1	0	1	48	50
9:30	0	0	0	0	0	0	0	5	0	0	0	0	5	5	38	2	3	0	0	43	45
9:45	0	0	0	0	0	0	0	4	1	1	0	0	6	7	34	3	1	2	0	40	43
н/тот	1	0	0	0	0	1	1	32	0	4	0	0	36	38	136	15	4	4	0	159	166

		мо	VEMEN	IT 4					мо	VEME	NT 5					мо	VEMEN	IT 6			
TIME	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU
16:00	0	0	0	0	0	0	0	2	0	1	0	0	3	4	24	8	1	1	0	34	36
16:15	0	0	0	0	0	0	0	4	0	0	0	0	4	4	27	0	1	0	1	29	31
16:30	0	0	0	0	0	0	0	1	1	0	0	0	2	2	26	5	0	1	0	32	33
16:45	0	0	0	0	0	0	0	9	1	0	0	0	10	10	60	4	0	2	0	66	69
17:00	0	0	0	0	0	0	0	6	0	1	0	0	7	8	32	4	1	1	0	38	40
17:15	0	0	0	0	0	0	0	1	0	0	0	0	1	1	41	7	0	0	1	49	50
17:30	0	0	0	0	0	0	0	5	1	0	0	0	6	6	21	5	0	1	0	27	28
17:45	0	0	0	0	0	0	0	10	2	1	1	0	14	16	27	8	2	1	0	38	40
18:00	0	0	0	0	0	0	0	1	0	0	0	0	1	1	24	3	0	1	0	28	29
18:15	0	0	0	0	0	0	0	2	0	0	0	0	2	2	34	3	0	2	0	39	42
18:30	0	0	0	0	0	0	0	4	1	0	0	0	5	5	21	5	0	0	0	26	26
18:45	0	0	0	0	0	0	0	2	0	0	0	0	2	2	22	6	0	1	0	29	30
н/тот	0	0	0	0	0	0	0	22	3	2	1	0	28	30	121	24	3	3	1	152	158

REF: Ath/15/070 - Ennis

SITE: 1

DAY:	Tuesday
DATE:	21st July 2015

		мо	VEMEN	IT 7					мс	VEME	NT 8					мо	VEME	NT 9			
TIME	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU
7:00	0	0	0	0	0	0	0	11	1	1	0	0	13	14	17	6	2	0	1	26	28
7:15	0	0	0	0	0	0	0	19	2	2	0	0	23	24	32	1	0	0	0	33	33
7:30	0	0	0	0	0	0	0	22	4	2	1	0	29	31	55	6	0	0	0	61	61
7:45	0	0	0	0	0	0	0	16	3	0	0	0	19	19	48	0	0	0	0	48	48
8:00	0	0	0	0	0	0	0	14	3	0	0	0	17	17	56	2	1	0	0	59	60
8:15	0	0	0	0	0	0	0	8	6	1	0	0	15	16	62	4	0	0	0	66	66
8:30	0	0	0	0	0	0	0	12	2	3	0	1	18	21	58	3	0	0	2	63	65
8:45	0	0	0	0	0	0	0	12	4	0	1	0	17	18	50	3	0	0	0	53	53
9:00	0	0	0	0	0	0	0	30	3	0	1	0	34	35	25	3	1	0	0	29	30
9:15	0	0	0	0	0	0	0	25	4	1	0	0	30	31	36	3	0	0	0	39	39
9:30	0	0	0	0	0	0	0	22	4	4	1	1	32	36	16	4	1	0	0	21	22
9:45	0	0	0	0	0	0	0	11	2	3	2	0	18	22	19	2	2	0	0	23	24
н/тот	0	0	0	0	0	0	0	46	15	4	1	1	67	71	226	12	1	0	2	241	244

		мо	VEMEN	IT 7					мо	VEME	NT 8					мо	VEMEN	NT 9			
TIME	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU
16:00	0	0	0	0	0	0	0	33	4	2	2	1	42	47	24	3	0	0	1	28	29
16:15	1	0	0	0	0	1	1	38	2	2	1	0	43	45	17	1	0	0	0	18	18
16:30	1	0	0	0	0	1	1	31	5	2	0	1	39	41	18	0	0	0	0	18	18
16:45	0	0	0	0	0	0	0	49	7	3	0	0	59	61	17	2	0	0	0	19	19
17:00	0	0	0	0	0	0	0	49	8	1	0	0	58	59	25	3	1	0	0	29	30
17:15	0	0	0	0	0	0	0	61	6	1	0	0	68	69	19	0	0	0	0	19	19
17:30	0	0	0	0	0	0	0	50	9	2	0	0	61	62	21	5	0	0	0	26	26
17:45	0	0	0	0	0	0	0	51	2	3	0	0	56	58	15	3	0	0	1	19	20
18:00	1	0	0	0	0	1	1	56	9	4	0	0	69	71	9	2	1	0	0	12	13
18:15	0	0	0	0	0	0	0	64	4	1	0	0	69	70	23	2	0	0	0	25	25
18:30	0	0	0	0	0	0	0	40	8	0	0	0	48	48	12	2	0	0	0	14	14
18:45	2	0	0	0	0	2	2	37	2	1	1	0	41	43	12	1	1	0	0	14	15
н/тот	0	0	0	0	0	0	0	211	25	7	0	0	243	247	80	11	1	0	1	93	95

REF: Ath/15/070 - Ennis

SITE: 2

DAY:	Tuesday
DATE:	21st July 2015

		мо	VEMEN	NT 1					мо	VEMEN	NT 2					мо	VEMEN	тз					мс	VEMEN	IT 4			
TIME	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU
7:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:15	0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:30	0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н/тот	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

		мо	VEME	NT 1					мо	VEMEN	IT 2					мо	VEMEN	тз					мс	VEMEN	IT 4			
TIME	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU
16:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:15	0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:30	0	0	0	0	0	0	0	0	2	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:45	0	0	0	0	0	0	0	0	2	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н/тот	0	0	0	0	0	0	0	0	4	0	0	0	4	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0

REF: Ath/15/070 - Ennis

SITE: 2

DAY:	Tuesday
DATE:	21st July 2015

		мо	VEMEN	NT 5					мо	VEMEN	NT 6					мо	VEMEN	т 7					мо	VEMEN	IT 8			
TIME	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU
7:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11	0	1	0	0	12	13	2	1	0	0	0	3	3
7:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	7	2	0	0	16	17	4	1	0	0	0	5	5
7:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	26	11	3	0	0	40	42	2	1	0	0	0	3	3
7:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	34	10	1	0	0	45	46	0	0	0	0	0	0	0
8:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	32	3	0	0	1	36	37	2	1	0	0	0	3	3
8:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	41	4	1	0	0	46	47	2	0	0	1	0	3	4
8:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	45	8	2	0	0	55	56	3	2	0	1	0	6	7
8:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	60	4	2	1	0	67	69	9	0	0	1	0	10	11
9:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	44	6	0	0	0	50	50	2	0	0	0	0	2	2
9:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	52	6	2	0	1	61	63	1	1	0	0	0	2	2
9:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	50	7	3	0	0	60	62	3	0	0	0	0	3	3
9:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	45	7	5	1	0	58	62	6	0	0	1	0	7	8
н/тот	0	0	0	0	0	0	0	0	0	0	0	0	0	0	178	19	5	1	1	204	209	16	3	0	3	0	22	26

		мо	VEME	MOVEMENT 5					мо	VEMEN	т 6					мо	VEMEN	IT 7					мс	VEMEN	1T 8			
TIME	CAR			1 OGV2	BUS	тот	PCU	CAR		OGV1		BUS	тот	PCU	CAR		OGV1		BUS	тот	PCU	CAR			OGV2	BUS	тот	PCU
16:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	35	8	1	0	0	44	45	1	0	0	1	0	2	3
16:15	0	0	0	0	0	0	0	0	1	0	0	0	1	1	32	4	1	0	2	39	42	3	0	0	0	0	3	3
16:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	32	6	0	0	1	39	40	4	0	0	1	0	5	6
16:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	59	4	1	2	0	66	69	5	1	0	0	0	6	6
17:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	40	7	1	1	0	49	51	1	0	0	0	0	1	1
17:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	47	6	0	0	2	55	57	9	1	0	0	0	10	10
17:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	35	7	0	1	0	43	44	1	0	0	0	0	1	1
17:45	0	0	0	0	0	0	0	0	1	0	0	0	1	1	34	7	1	1	0	43	45	7	1	1	0	0	9	10
18:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	37	3	0	1	0	41	42	3	1	0	0	0	4	4
18:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	38	6	0	2	0	46	49	1	0	0	0	0	1	1
18:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	30	6	0	0	2	38	40	0	1	0	0	0	1	1
18:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	34	4	0	0	0	38	38	4	2	0	1	0	7	8
н/тот	0	0	0	0	0	0	0	0	1	0	0	0	1	1	156	27	2	3	2	190	197	18	2	1	0	0	21	22

REF: Ath/15/070 - Ennis

SITE: 2

DAY:	Tuesday
DATE:	21st July 2015

		мо	VEMEN	NT 9					мо	VEMEN	IT 10					мо	VEMEN	r 11					мо	VEMEN	т 12			
TIME	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU
7:00	0	0	0	0	0	0	0	4	0	0	0	0	4	4	0	0	0	0	0	0	0	5	0	0	0	0	5	5
7:15	0	0	0	0	0	0	0	6	0	0	0	0	6	6	0	0	0	0	0	0	0	8	2	2	0	0	12	13
7:30	0	0	0	0	0	0	0	5	1	0	1	0	7	8	0	0	0	0	0	0	0	8	5	0	0	0	13	13
7:45	0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	0	0	0	0	0	0	13	3	1	0	0	17	18
8:00	0	0	0	0	0	0	0	7	0	0	0	0	7	7	0	0	0	0	0	0	0	10	2	1	0	0	13	14
8:15	0	0	0	0	0	0	0	4	2	0	0	0	6	6	0	0	0	0	0	0	0	16	3	0	1	0	20	21
8:30	0	0	0	0	0	0	0	5	1	1	0	0	7	8	0	0	0	0	0	0	0	15	0	2	0	0	17	18
8:45	0	0	0	0	0	0	0	0	0	0	1	0	1	2	0	0	0	0	0	0	0	25	3	0	0	0	28	28
9:00	0	0	0	0	0	0	0	2	1	1	1	0	5	7	0	0	0	0	0	0	0	24	5	0	0	0	29	29
9:15	0	0	0	0	0	0	0	4	0	0	0	0	4	4	0	0	0	0	0	0	0	11	1	1	0	0	13	14
9:30	0	0	0	0	0	0	0	5	0	0	1	0	6	7	0	0	0	0	0	0	0	17	3	2	0	0	22	23
9:45	0	0	0	0	0	0	0	3	0	1	2	0	6	9	0	0	0	0	0	0	0	18	5	1	1	0	25	27
н/тот	0	0	0	0	0	0	0	16	3	1	1	0	21	23	0	0	0	0	0	0	0	66	8	3	1	0	78	81

		мо	VEME	NT 9					MO	VEMEN	т 10					мо	VEMEN	Т 11					мо	VEMEN	т 12			
TIME	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU
16:00	0	0	0	0	0	0	0	4	2	0	2	0	8	11	0	0	0	0	0	0	0	29	4	0	0	0	33	33
16:15	0	0	0	0	0	0	0	1	1	2	1	0	5	7	0	0	0	0	0	0	0	24	1	1	0	0	26	27
16:30	0	0	0	0	0	0	0	9	2	0	0	0	11	11	0	0	0	0	0	0	0	26	3	1	0	0	30	31
16:45	1	0	0	0	0	1	1	11	1	0	0	0	12	12	0	0	0	0	0	0	0	45	0	1	0	0	46	47
17:00	0	0	0	0	0	0	0	9	2	0	0	0	11	11	0	0	0	0	0	0	0	42	4	0	0	1	47	48
17:15	0	0	0	0	0	0	0	13	0	0	0	0	13	13	0	0	0	0	0	0	0	66	4	1	0	0	71	72
17:30	0	0	0	0	0	0	0	9	2	1	0	0	12	13	0	0	0	0	0	0	0	59	4	0	0	0	63	63
17:45	0	0	0	0	0	0	0	13	0	0	0	0	13	13	1	0	0	0	0	1	1	55	4	3	0	0	62	64
18:00	0	0	0	0	0	0	0	14	3	1	0	0	18	19	0	0	0	0	0	0	0	56	4	2	0	0	62	63
18:15	0	0	0	0	0	0	0	7	0	0	0	0	7	7	0	0	0	0	0	0	0	58	2	0	0	0	60	60
18:30	0	0	0	0	0	0	0	6	0	0	0	0	6	6	0	0	0	0	0	0	0	29	3	0	0	0	32	32
18:45	0	0	0	0	0	0	0	6	1	1	1	0	9	11	0	0	0	0	0	0	0	32	2	1	0	0	35	36
н/тот	0	0	0	0	0	0	0	44	4	1	0	0	49	50	1	0	0	0	0	1	1	222	16	4	0	1	243	246

REF: Ath/15/070 - Ennis

SITE: 2

DAY:	Tuesday
DATE:	21st July 2015

		мо	/EMEN	т 13					мо	/EMEN	IT 14					мо	VEMEN	Г 15					мо	VEMEN	Т 16			
TIME	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU
7:00	0	0	0	0	0	0	0	9	3	1	0	0	13	14	24	7	3	0	1	35	38	0	0	0	0	0	0	0
7:15	0	0	0	0	0	0	0	9	2	0	0	0	11	11	45	3	2	0	0	50	51	0	0	0	0	0	0	0
7:30	0	0	0	0	0	0	0	10	1	0	0	0	11	11	72	9	2	0	0	83	84	0	0	0	0	0	0	0
7:45	0	0	0	0	0	0	0	9	1	2	0	0	12	13	64	2	0	0	0	66	66	0	0	0	0	0	0	0
8:00	0	0	0	0	0	0	0	16	3	1	0	1	21	23	63	5	1	0	0	69	70	0	0	0	0	0	0	0
8:15	1	0	0	0	0	1	1	4	1	1	0	0	6	7	66	8	1	0	0	75	76	0	0	0	0	0	0	0
8:30	0	0	0	0	0	0	0	7	5	0	0	1	13	14	65	4	2	0	3	74	78	0	0	0	0	0	0	0
8:45	0	0	0	0	0	0	0	11	1	0	0	0	12	12	62	7	0	0	0	69	69	0	0	0	0	0	0	0
9:00	0	0	0	0	0	0	0	14	1	0	0	0	15	15	53	5	0	0	0	58	58	0	0	0	0	0	0	0
9:15	0	0	0	0	0	0	0	9	2	0	1	0	12	13	57	7	1	0	0	65	66	0	0	0	0	0	0	0
9:30	0	0	0	0	0	0	0	6	0	1	1	1	9	12	33	8	5	0	1	47	51	0	2	0	0	0	2	2
9:45	0	1	0	0	0	1	1	5	0	1	0	0	6	7	27	4	4	0	0	35	37	0	0	0	0	0	0	0
н/тот	1	0	0	0	0	1	1	38	10	2	0	2	52	55	256	24	4	0	3	287	292	0	0	0	0	0	0	0

		мо	VEMEN	IT 13					MO	/EMEN	т 14					мо	VEMEN	r 15					мо	VEMEN	Т 16			
TIME	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU	CAR	LGV	OGV1	OGV2	BUS	тот	PCU
16:00	0	0	0	0	0	0	0	15	2	2	1	0	20	22	53	5	2	0	2	62	65	0	0	0	0	0	0	0
16:15	0	0	0	0	0	0	0	11	1	2	0	0	14	15	55	2	0	0	0	57	57	0	0	0	0	0	0	0
16:30	0	0	0	0	0	0	0	12	1	1	0	1	15	17	41	3	2	0	1	47	49	0	0	0	0	0	0	0
16:45	0	0	0	0	0	0	0	9	3	1	0	0	13	14	55	8	3	0	0	66	68	0	0	0	0	0	0	0
17:00	0	0	0	0	0	0	0	18	3	2	0	0	23	24	65	9	2	0	0	76	77	0	0	0	0	0	0	0
17:15	0	0	0	0	0	0	0	10	4	0	1	0	15	16	67	6	1	0	0	74	75	0	0	0	0	0	0	0
17:30	0	0	0	0	0	0	0	13	3	0	0	1	17	18	62	12	1	0	0	75	76	0	1	0	0	0	1	1
17:45	0	0	0	0	0	0	0	27	1	0	0	0	28	28	53	5	3	0	1	62	65	0	0	0	0	0	0	0
18:00	0	0	0	0	0	0	0	13	0	0	0	0	13	13	52	8	4	0	0	64	66	0	0	0	0	0	0	0
18:15	0	0	0	0	0	0	0	18	2	0	0	0	20	20	80	6	1	0	0	87	88	0	0	0	0	0	0	0
18:30	0	0	0	0	0	0	0	12	0	0	0	1	13	14	46	10	0	0	0	56	56	0	0	0	0	0	0	0
18:45	0	0	0	0	0	0	0	9	3	0	0	0	12	12	45	2	1	0	0	48	49	0	0	0	0	0	0	0
н/тот	0	0	0	0	0	0	0	68	11	2	1	1	83	86	247	32	7	0	1	287	292	0	1	0	0	0	1	1

APPENDIX 12.2

AUTOMATIC TRAFFIC COUNT DATA

ALAN LIPSCOMBE TRAFFIC AND TRANSPORT

M18 between Junction 13 Tulla Road and Junction 14 Barefield, TII

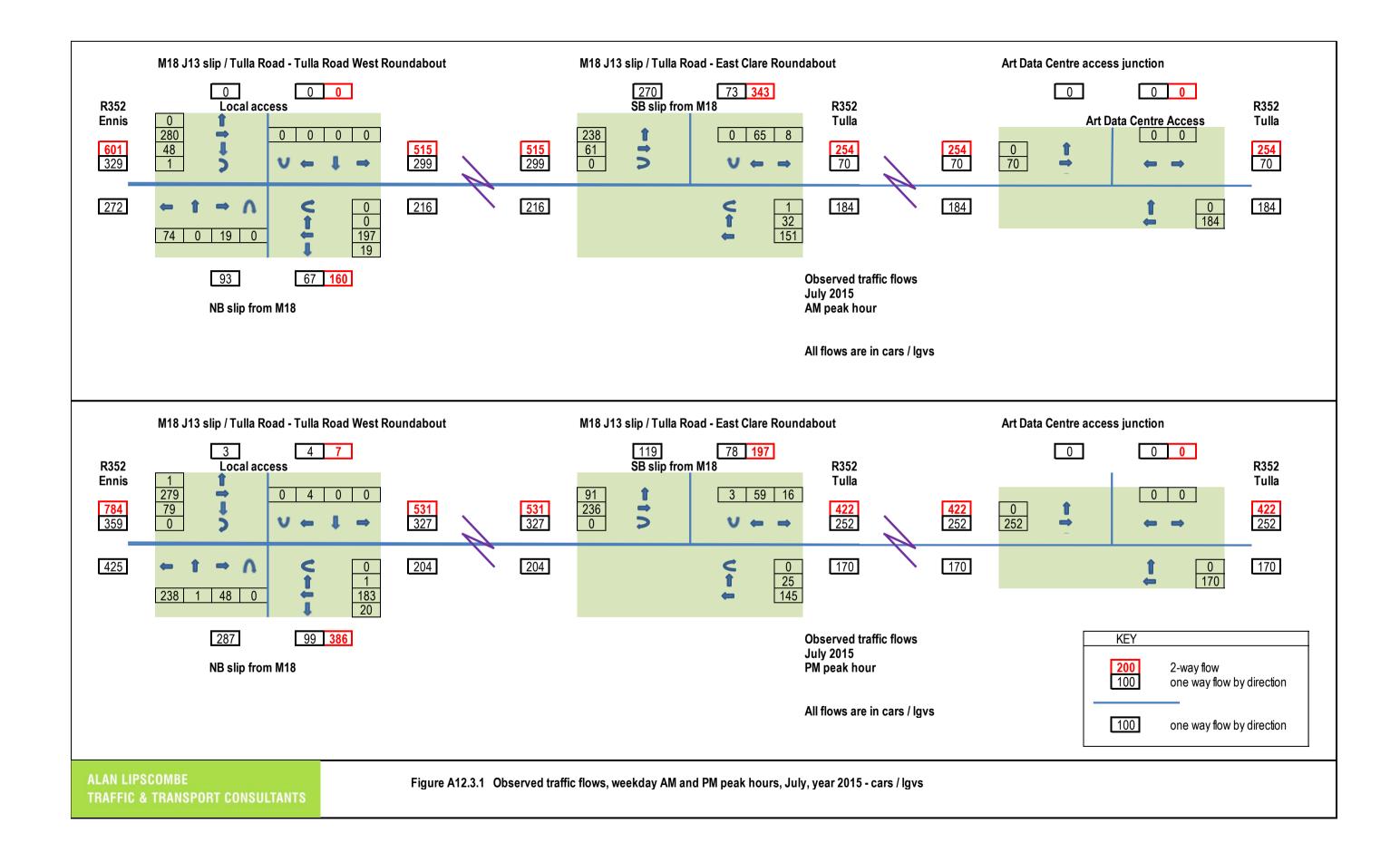
Transport Infrastructure Ireland Automatic Count Site – M18 located between Junction 13 Tulla Road and Junction 14 Barefield Road

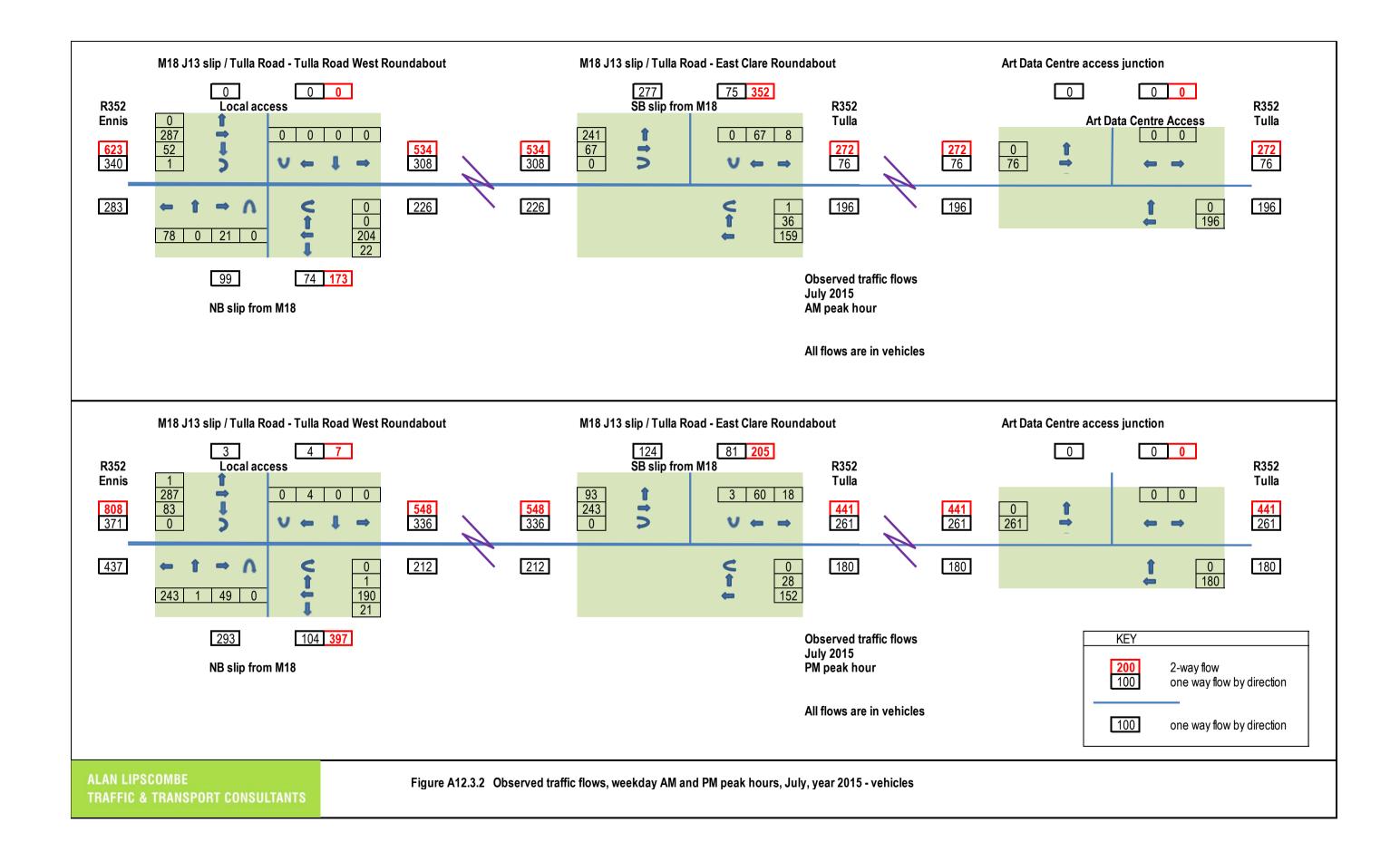
Year 2015 by month

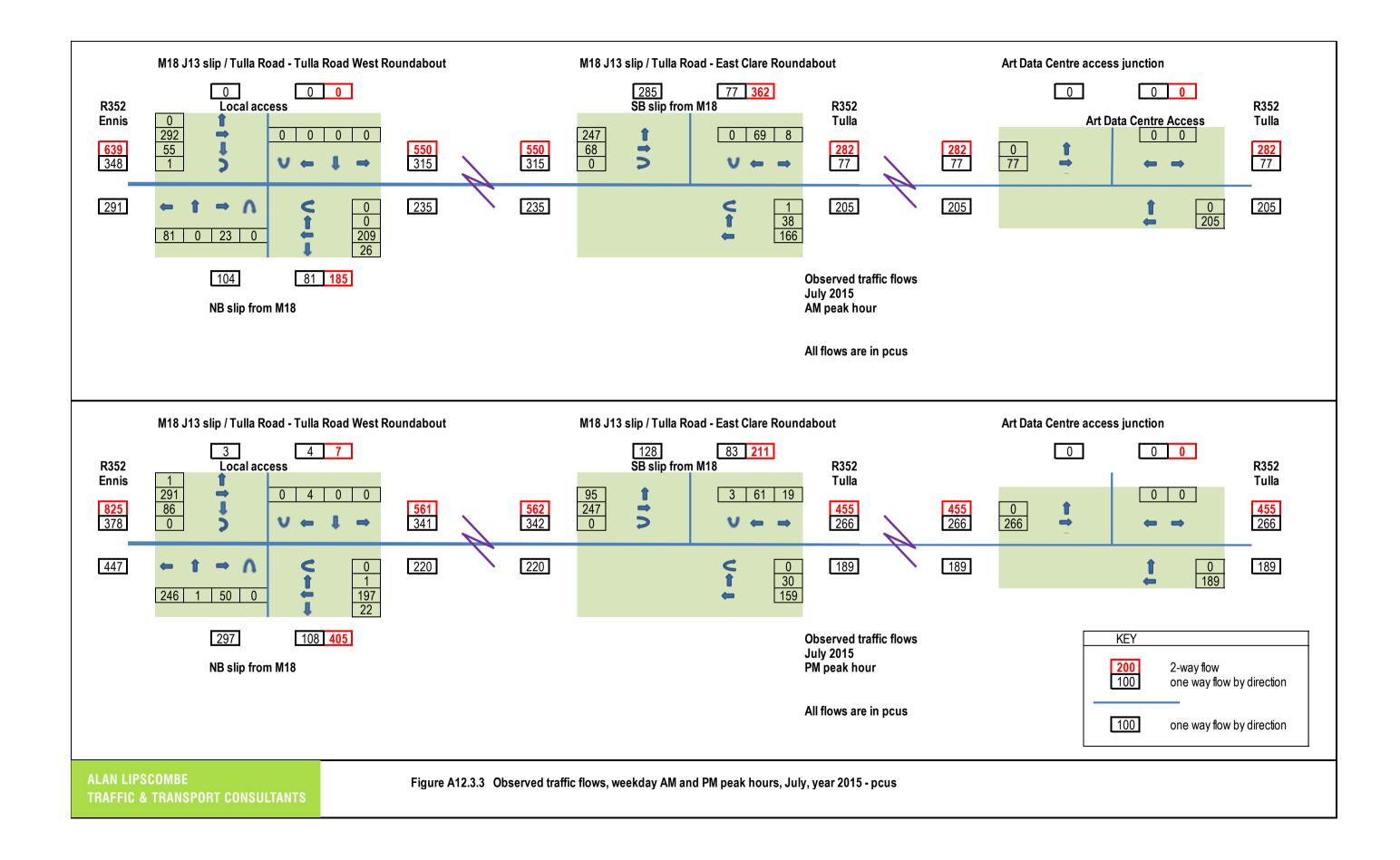
Date	Monday - Friday 12Hr 16Hr 18Hr 24Hr				۲ 12Hr		- Sunda 18Hr		am Peak Hour	Monday am Peak Flow	- Friday pm Peak Hour
Jan 2015	8448	9742	9966	10218	7915	9211	9447	9698	08:05	940	17:04
Feb 2015	9491	11047	11326	11599	8932	10472	10760	11034	08:05	1079	17:02
Mar 2015	9468	11085	11377	11677	8983	10603	10905	11203	08:02	1049	17:06
Apr 2015	9747	11511	11842	12153	9194	10944	11296	11602	08:01	1024	17:05
May 2015	10323	12255	12641	12982	9747	11601	11991	12326	08:02	1085	17:04
Jun 2015	9998	11858	12208	12556	9436	11262	11630	11977	08:04	1034	17:00
Jul 2015	10718	12697	13104	13466	10192	12133	12548	12902	07:58	983	16:54
Aug 2015	10842	12844	13242	13590	10374	12346	12748	13097	07:54	960	17:00
Sep 2015	10447	12308	12653	12986	9820	11696	12059	12385	08:00	1153	17:01
Oct 2015	10641	12512	12851	13187	9987	11793	12142	12480	08:02	1107	17:00
Nov 2015	9904	11557	11854	12176	9322	10951	11260	11580	08:09	1132	16:45
Dec 2015	9172	10640	10933	11249	8638	10072	10370	10682	08:12	862	16:46

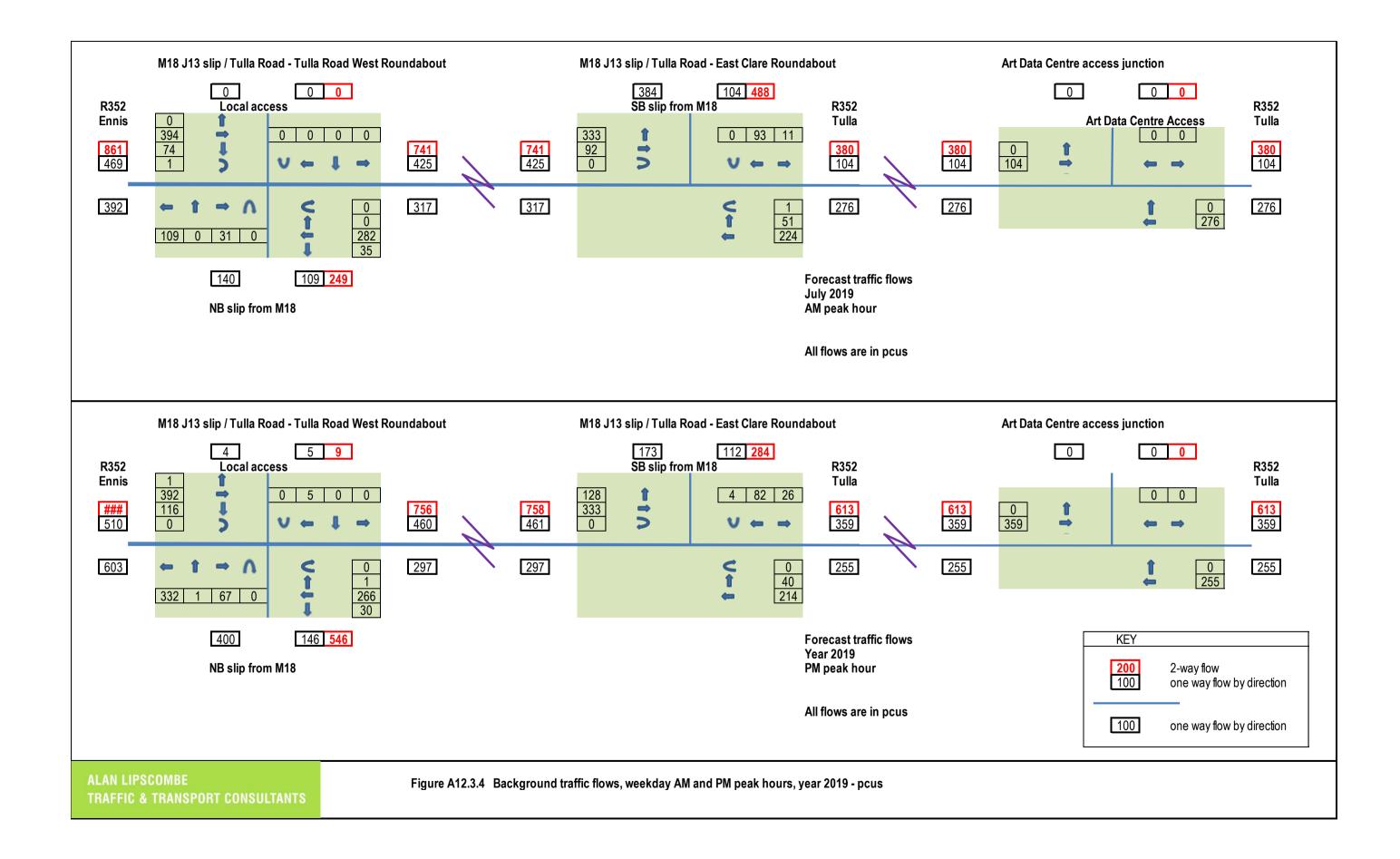
Year 2015 by hour

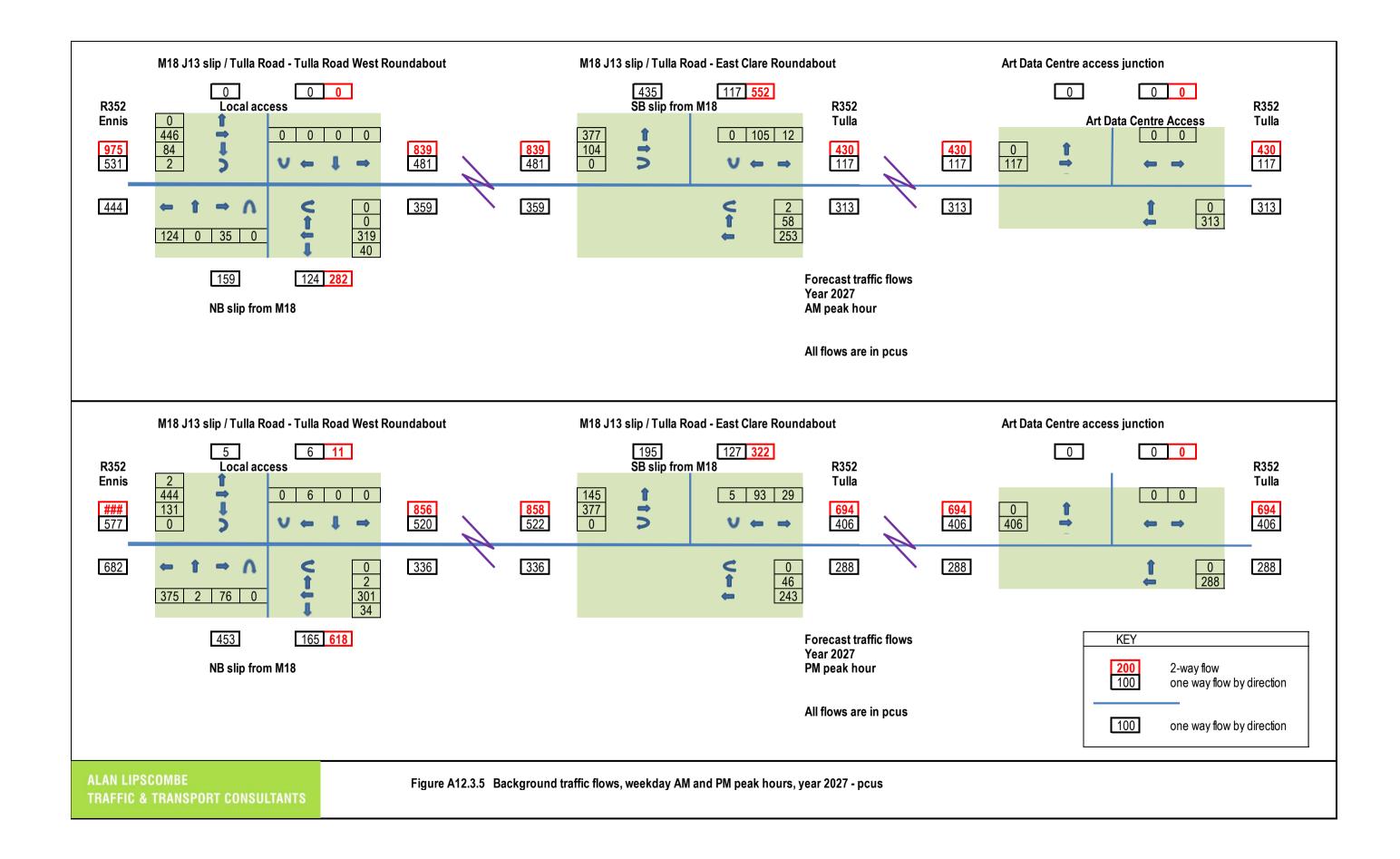
	Northbound 1	Northbound 2	Southbound 2	Southbound 1	Total
00:00	40	2	1	29	72
01:00	22	1	0	18	42
02:00	14	0	0	15	30
03:00	12	0	0	14	27
04:00	13	0	1	26	40
05:00	37	2	4	66	108
06:00	138	20	13	117	288
07:00	228	45	72	272	617
08:00	291	63	109	360	822
09:00	265	46	58	300	670
10:00	255	41	38	258	592
11:00	284	52	44	271	650
12:00	306	62	52	293	712
13:00	323	68	56	304	751
14:00	321	69	61	317	768
15:00	343	83	74	349	848
16:00	387	111	91	380	969
17:00	438	156	101	394	1089
18:00	361	104	80	348	893
19:00 20:00	248 185	47 27	52 30	282 208	630 451
20:00	163	27	14	144	344
21:00	105	11	6	91	214
22:00	60	4	3	59	125
25.00	00				125
07-19	3803	899	835	3844	9382
06-22	4536	1016	945	4596	11093
06-24	4702	1031	954	4746	11432
00-24	4840	1036	961	4914	11750
am Peak	08:00	08:00	08:00	08:00	08:00
Peak Volume	291	63	109	360	822
pm Peak	17:00	17:00	17:00	17:00	17:00
Peak Volume	438	156	101	394	1089

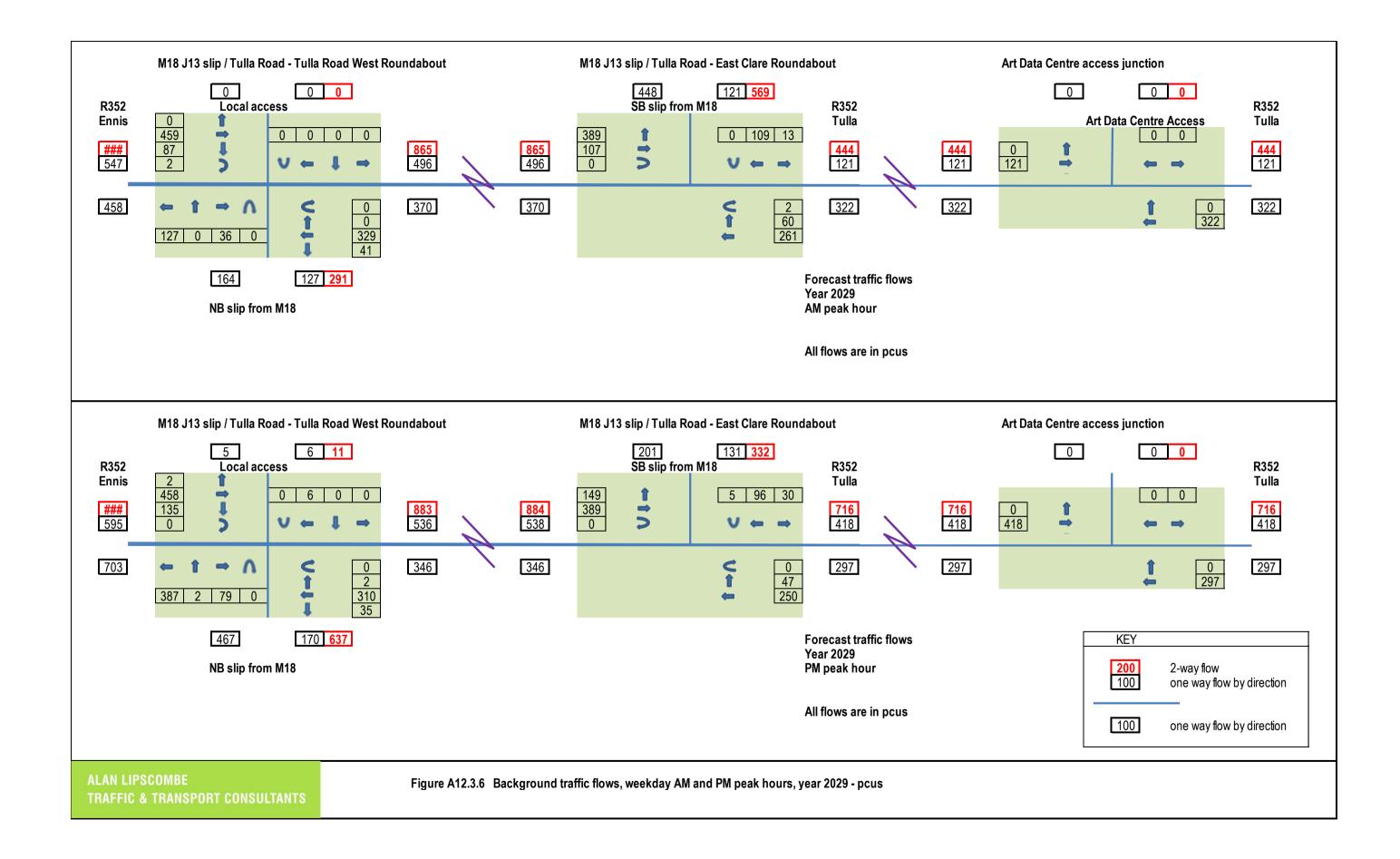

APPENDIX 12.3

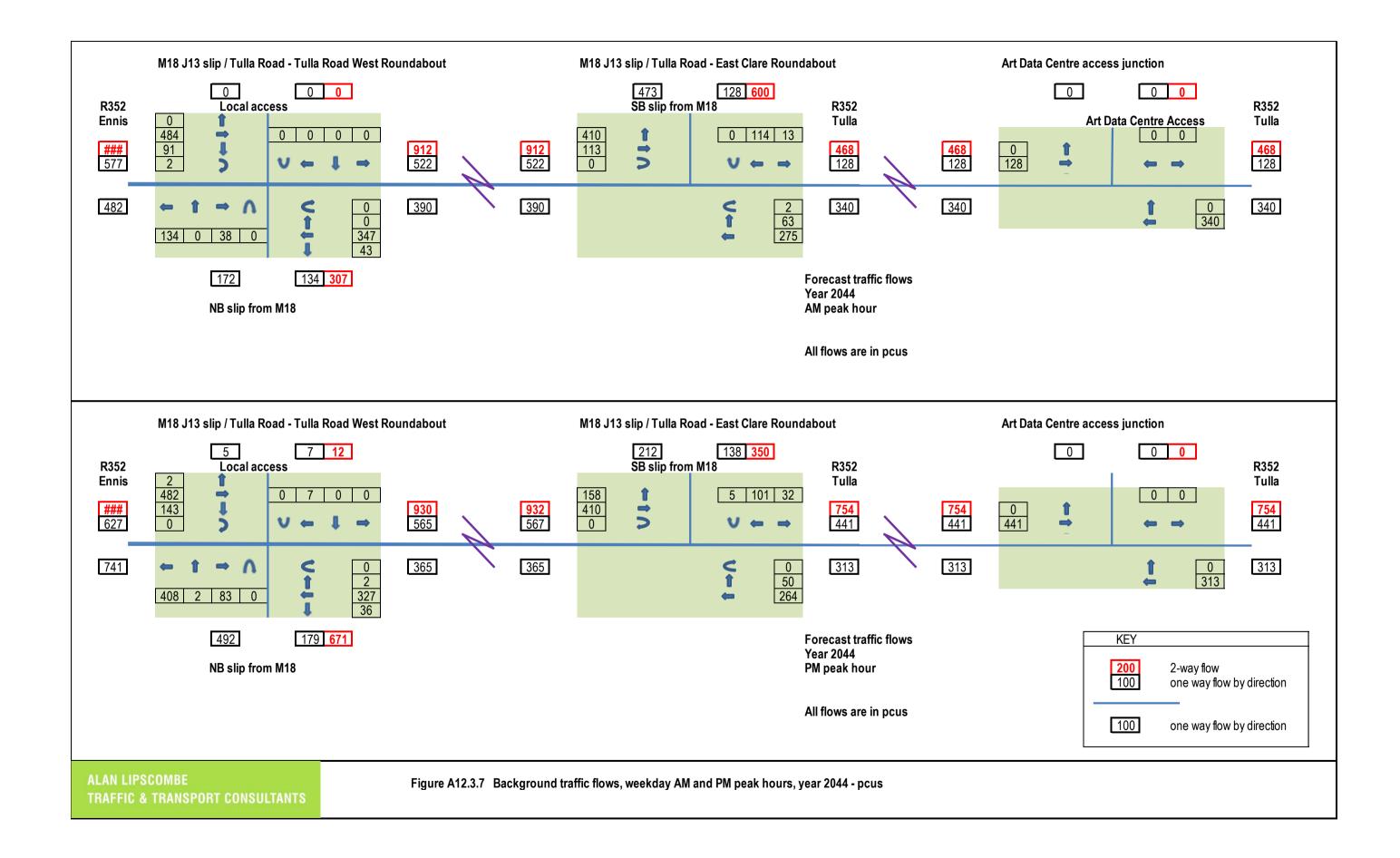

TRAFFIC FLOW DIAGRAMS

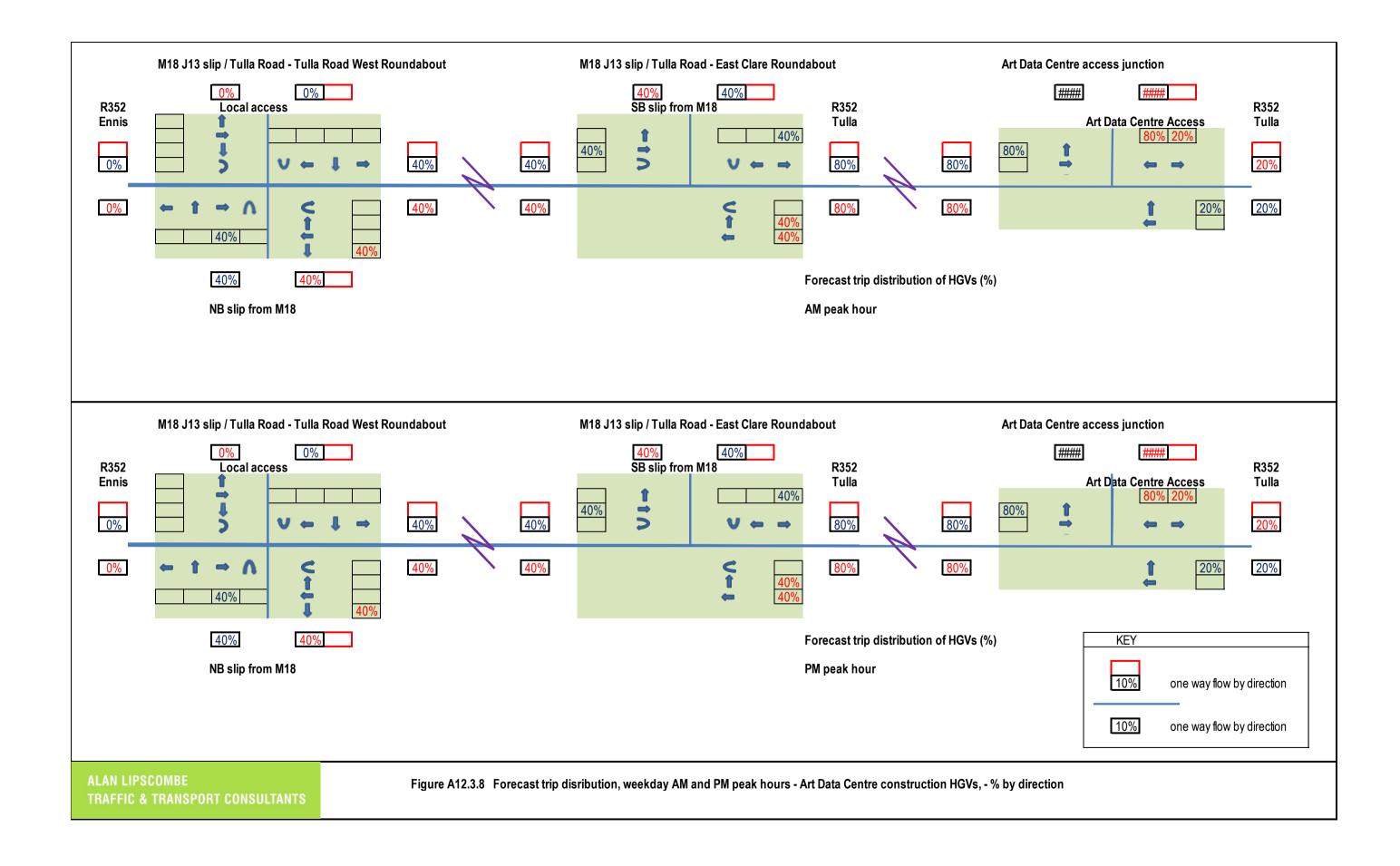

ALAN LIPSCOMBE TRAFFIC AND TRANSPORT

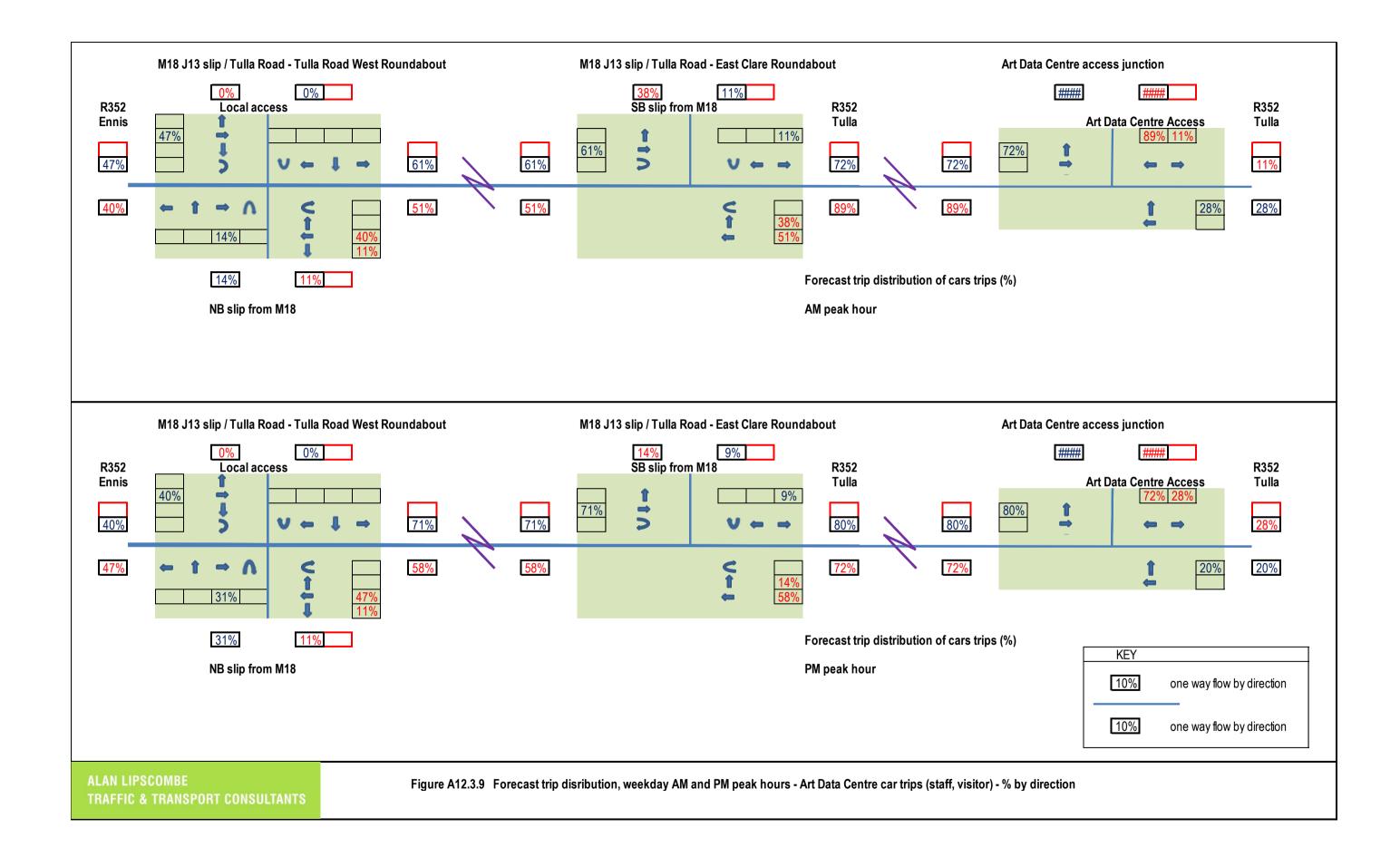

- Figure A12.3.1 Observed traffic flows, AM and PM peak hours, July, year 2015 cars / lgvs
- Figure A12.3.2 Observed traffic flows, AM and PM peak hours, July, year 2015 vehicles
- Figure A12.3.3 Observed traffic flows, AM and PM peak hours, July, year 2015 pcus
- Figure A12.3.4 Background traffic flows, AM and PM peak hours, year 2019 pcus
- Figure A12.3.5 Background traffic flows, AM and PM peak hours, year 2027 pcus
- Figure A12.3.6 Background traffic flows, AM and PM peak hours, year 2029 pcus
- Figure A12.3.7 Background traffic flows, AM and PM peak hours, year 2044 pcus
- Figure A12.3.8 Forecast trip distribution, AM and PM peak hours Art Data Centre construction HGVs % by direction
- Figure A12.3.9 Forecast trip distribution, AM and PM peak hours Art Data Centre car trips (staff visitors) % by direction
- Figure A12.3.10 Generated HGV trip, AM and PM peak hours Art Data Centre peak construction, year 2027 HGVs
- Figure A12.3.11 Generated car/lgv trips, AM and PM peak hours Art Data Centre peak construction, year 2027 cars/lgvs
- Figure A12.3.12 Generated total trips, AM and PM peak hours Art Data Centre peak construction, year 2027 pcus
- Figure A12.3.13 Generated HGV trip, AM and PM peak hours Art Data Centre peak construction HGV deliveries, year 2027 HGVs
- Figure A12.3.14 Generated car/lgv trips, AM and PM peak hours Art Data Centre peak construction HGV deliveries, year 2027 cars/lgvs
- Figure A12.3.15 Generated total trips, AM and PM peak hours Art Data Centre peak construction HGV deliveries, year 2027 pcus
- Figure A12.3.16 Generated HGV trips, AM and PM peak hours Art Data Centre fully operational, HGVs
- Figure A12.3.17 Generated car/lgv trips, AM and PM peak hours Art Data Centre fully operational, cars/lgvs
- Figure A12.3.18 Generated total trips, AM and PM peak hours Art Data Centre fully operational, all vehicles pcus
- Figure A12.3.19 With Art Data Centre peak construction traffic flows, AM and PM peak hours, year 2027 pcus

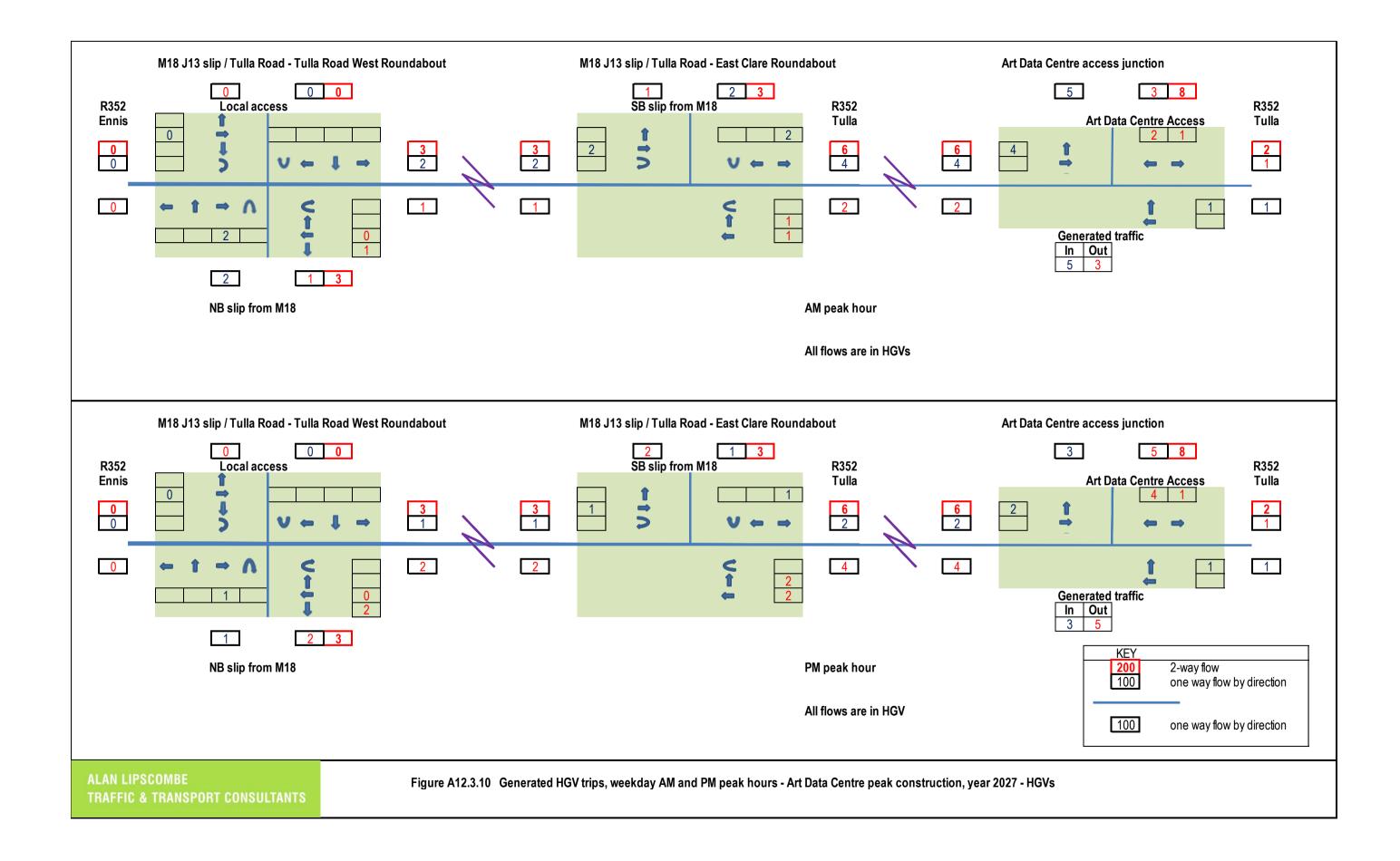

- Figure A12.3.20 With Art Data Centre peak construction HGV deliveries traffic flows, AM and PM peak hours, year 2027 - pcus
- Figure A12.3.21 With Art Data Centre average construction traffic flows, AM and PM peak hours, year 2027 pcus
- Figure A12.3.22 With Art Data Centre fully operational traffic flows, AM and PM peak hours, year 2029 pcus
- Figure A12.3.23 With Art Data Centre fully operational traffic flows, AM and PM peak hours, year 2044 pcus

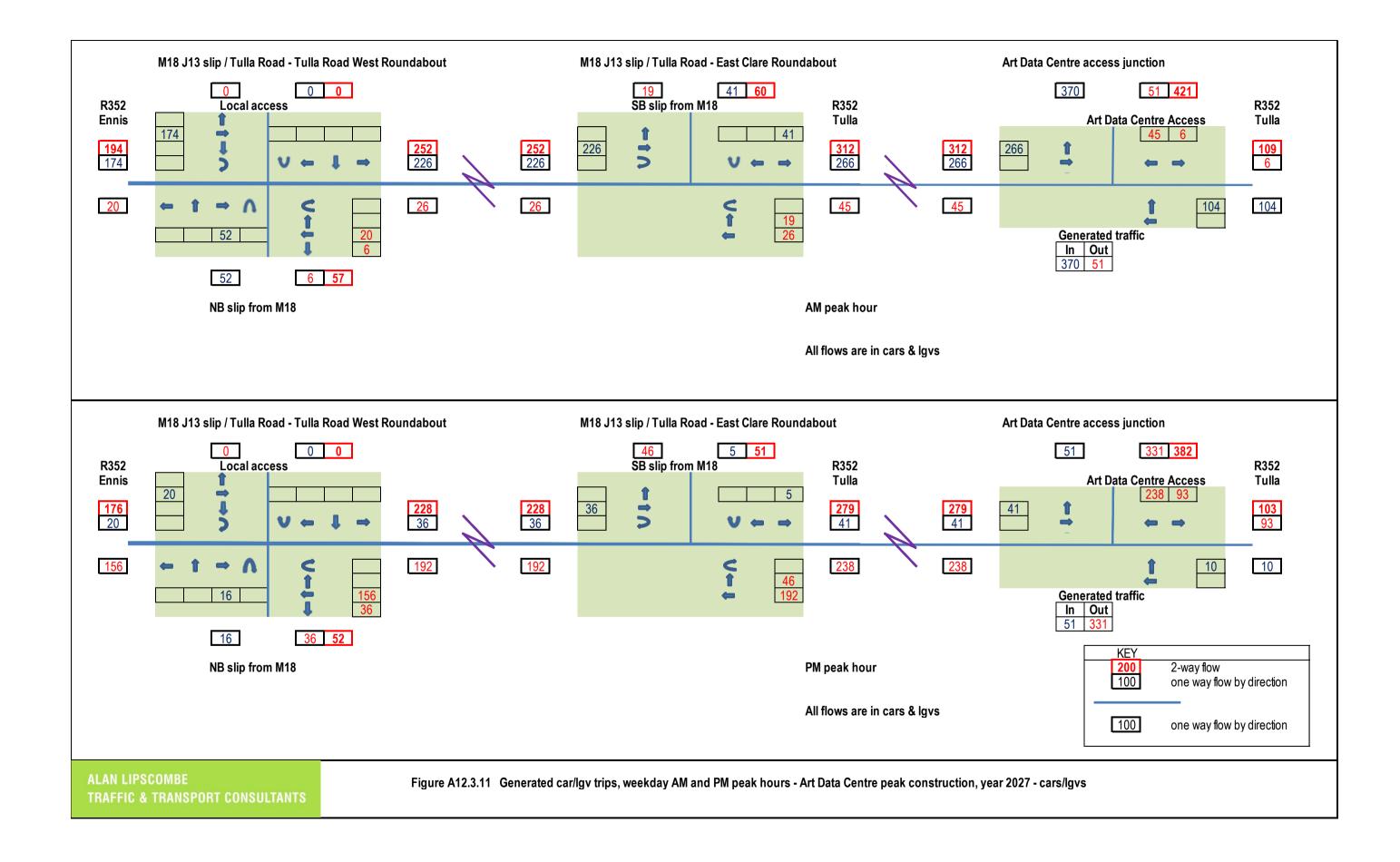


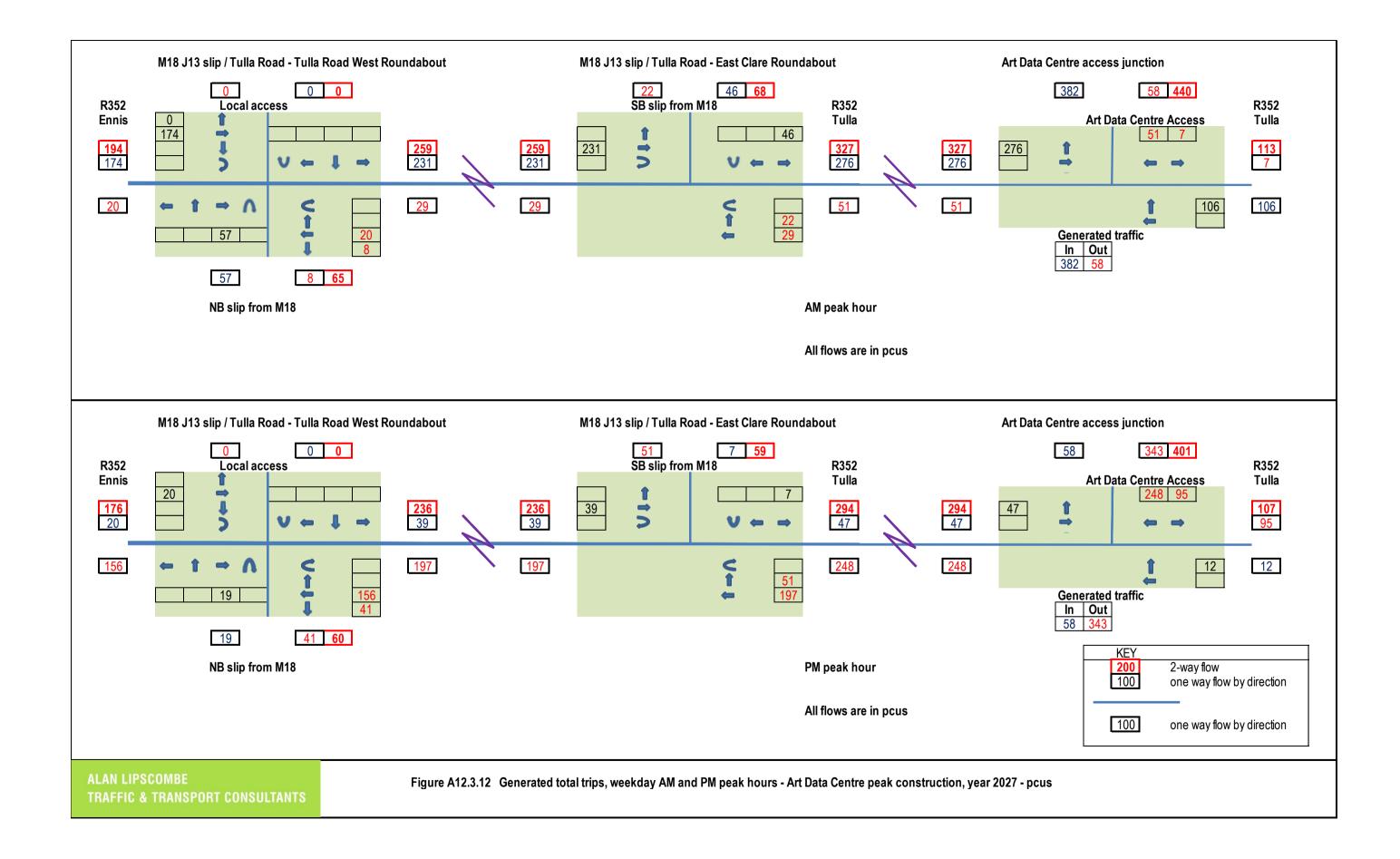


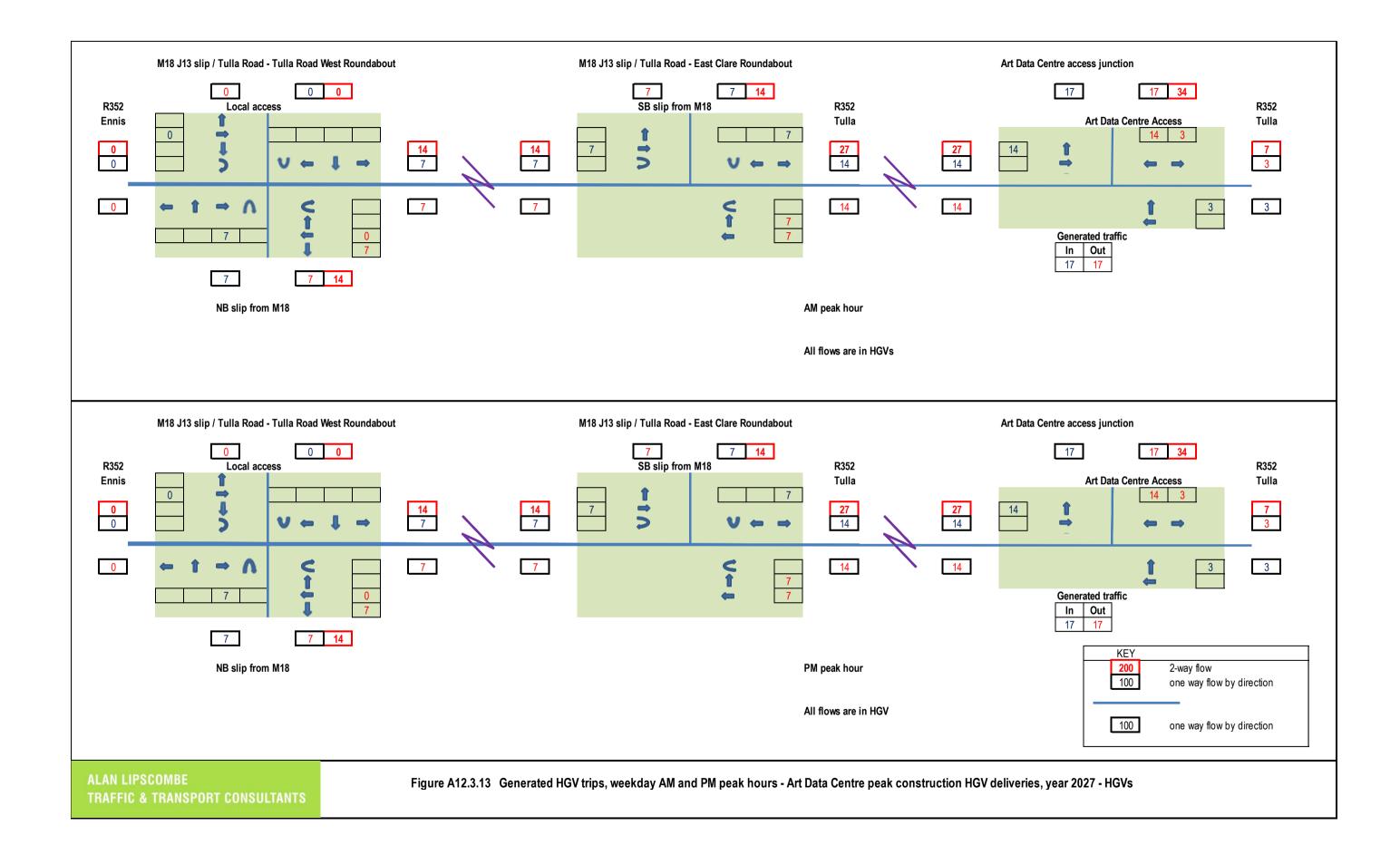


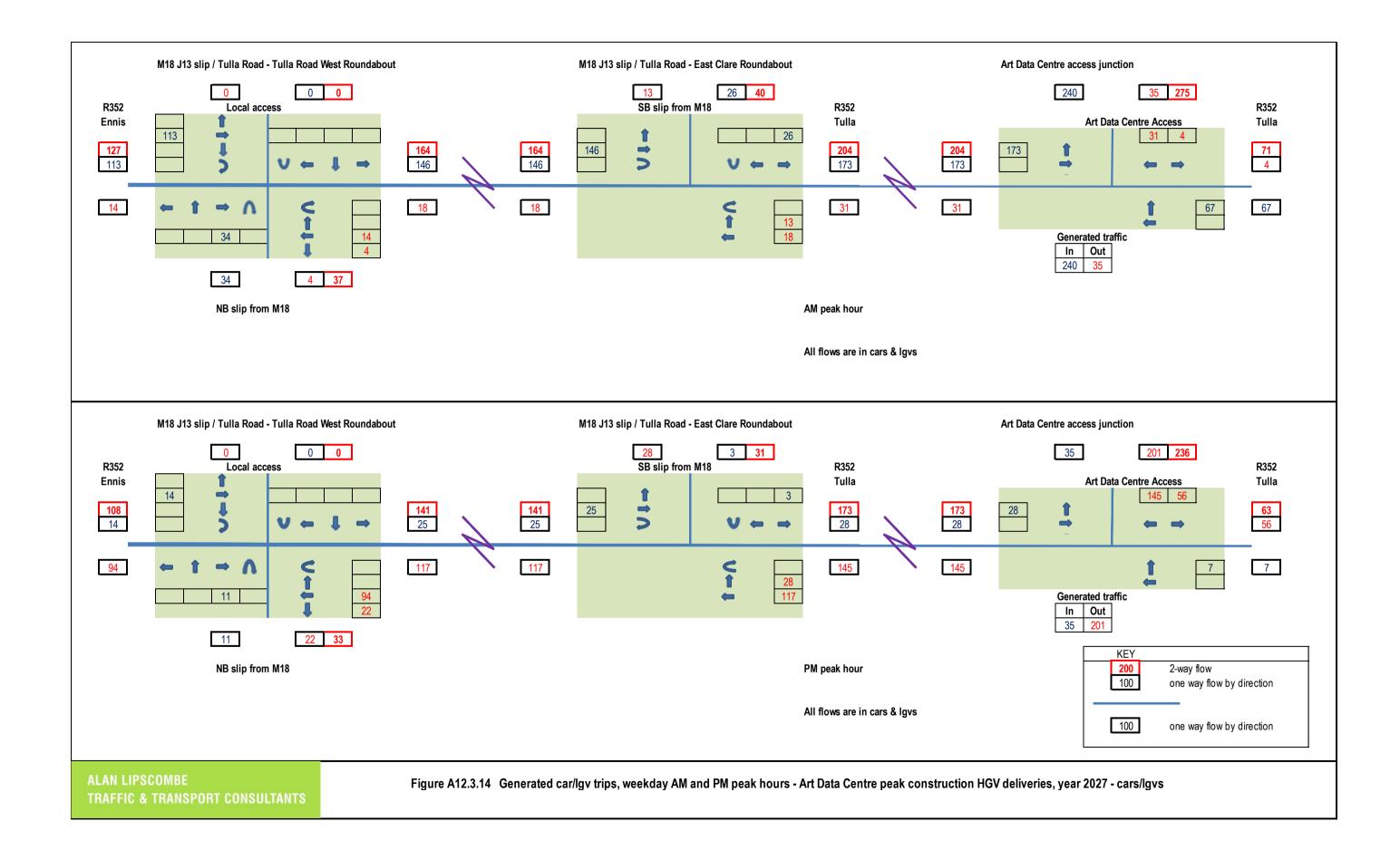


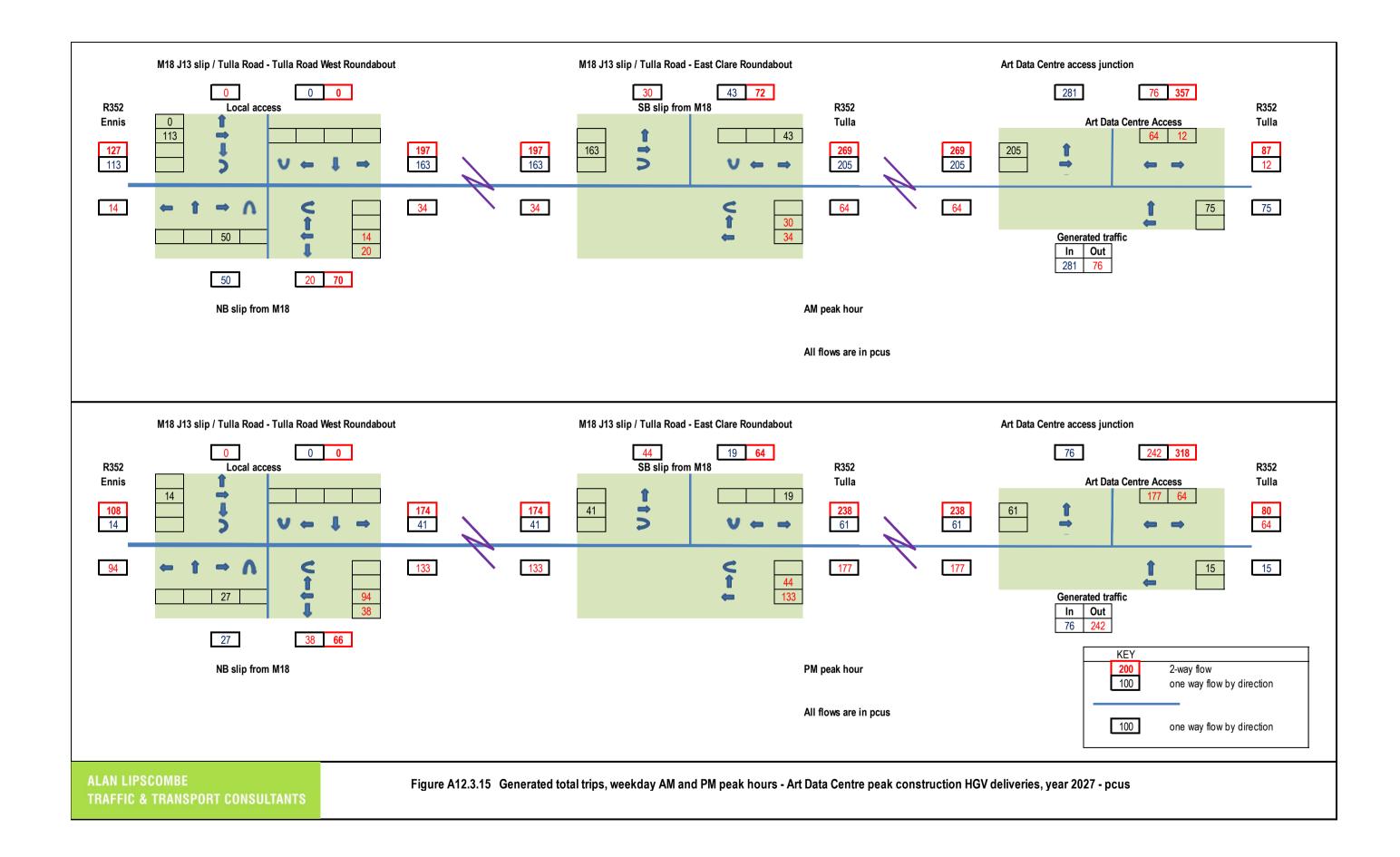


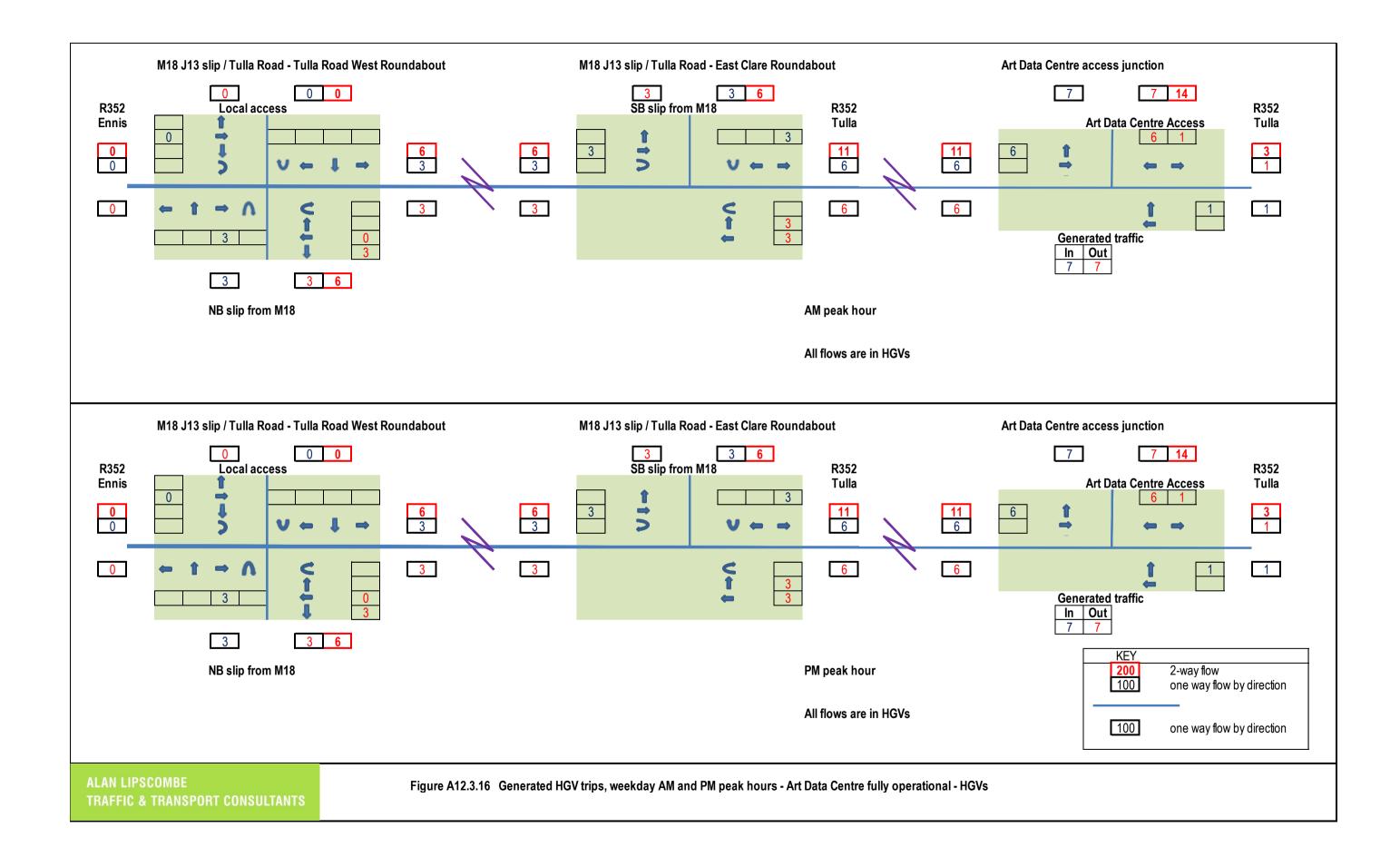


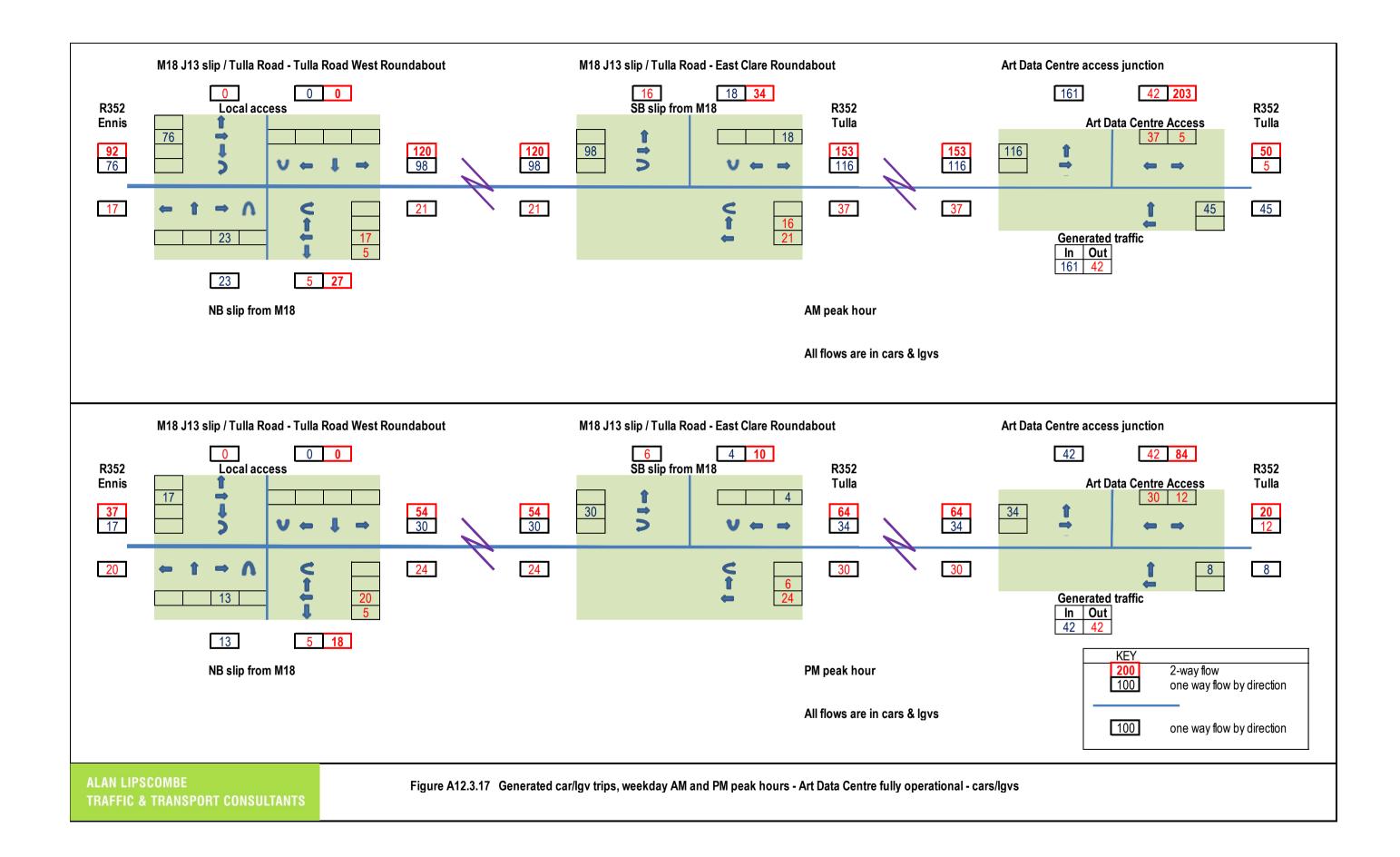


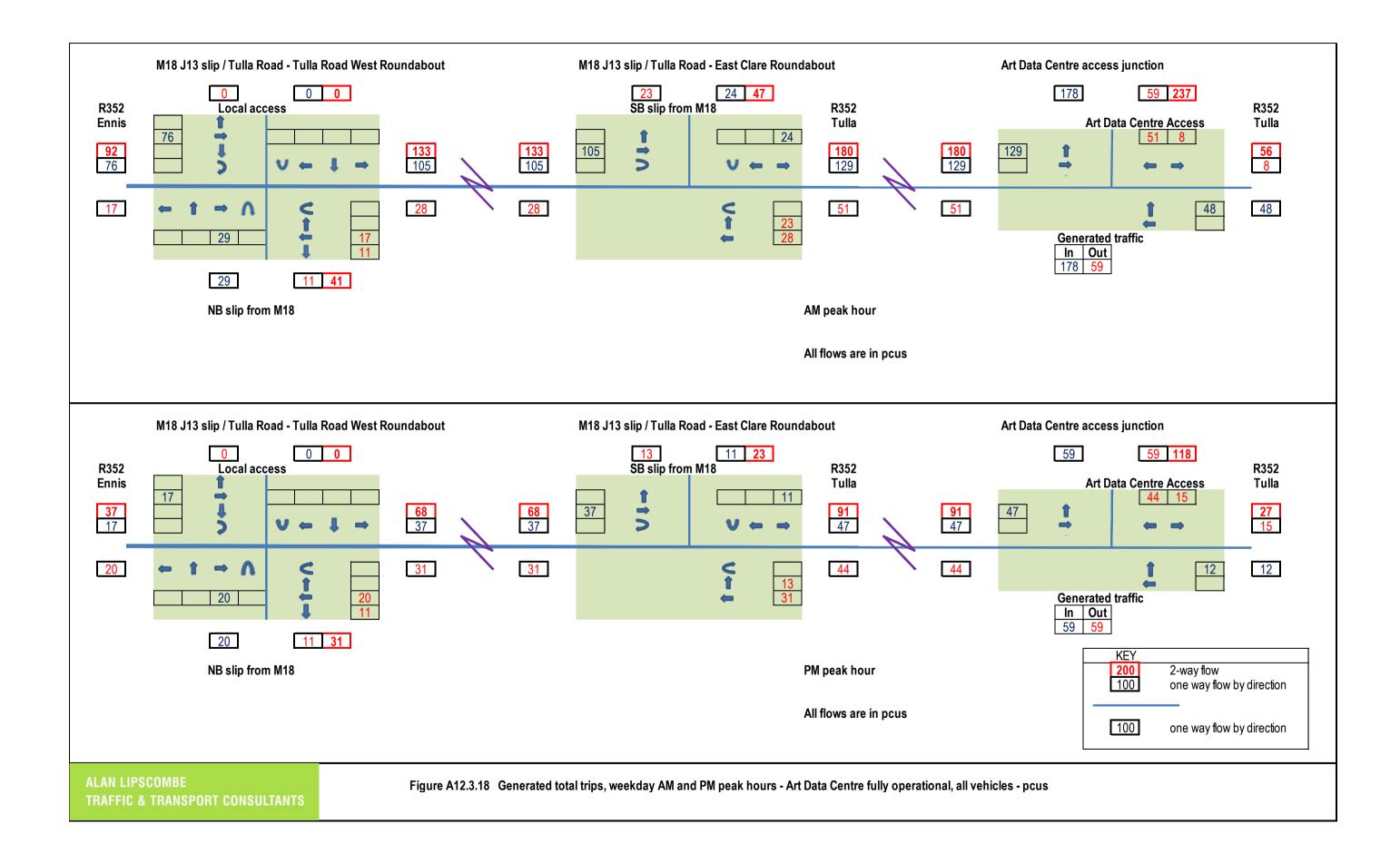


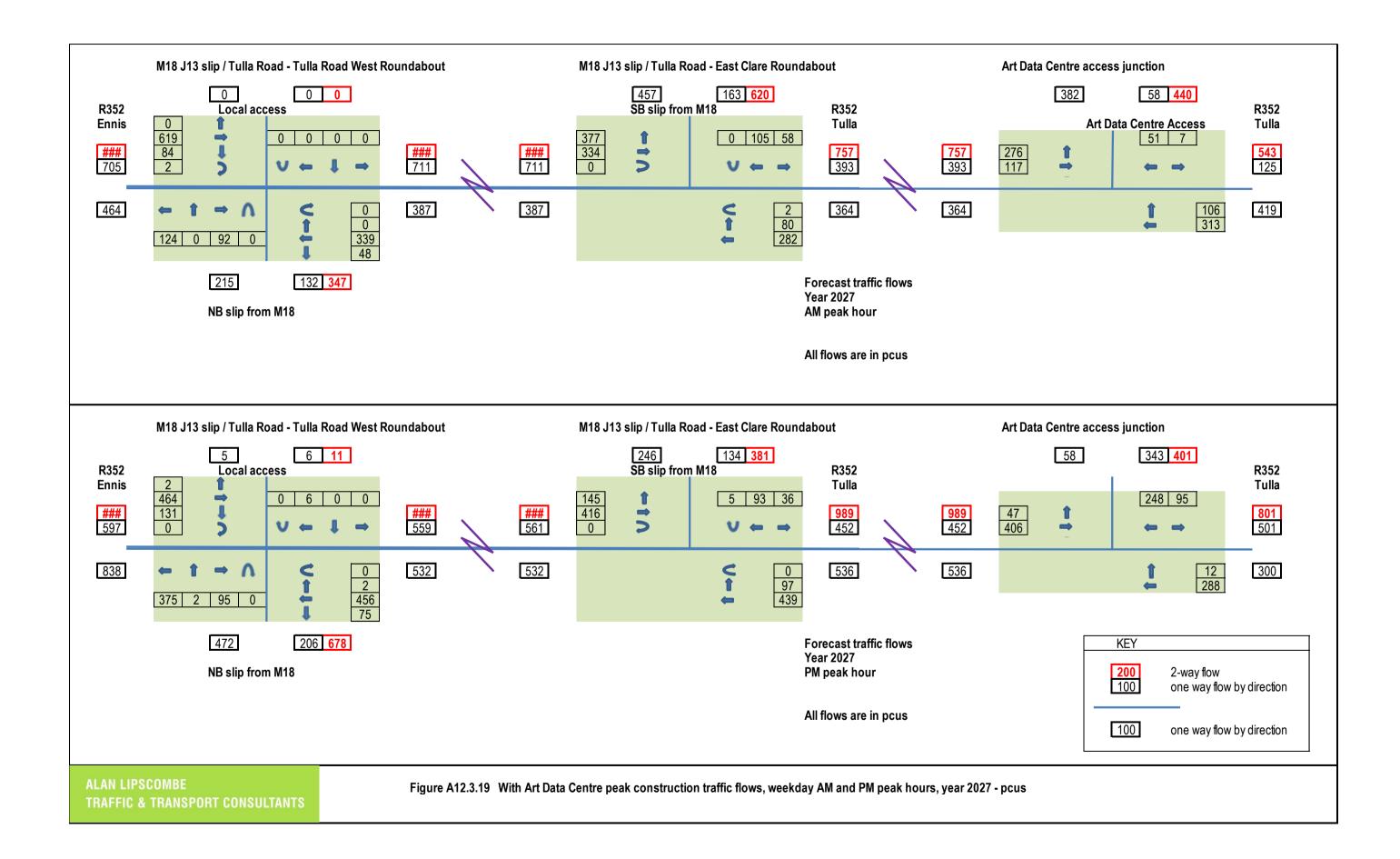


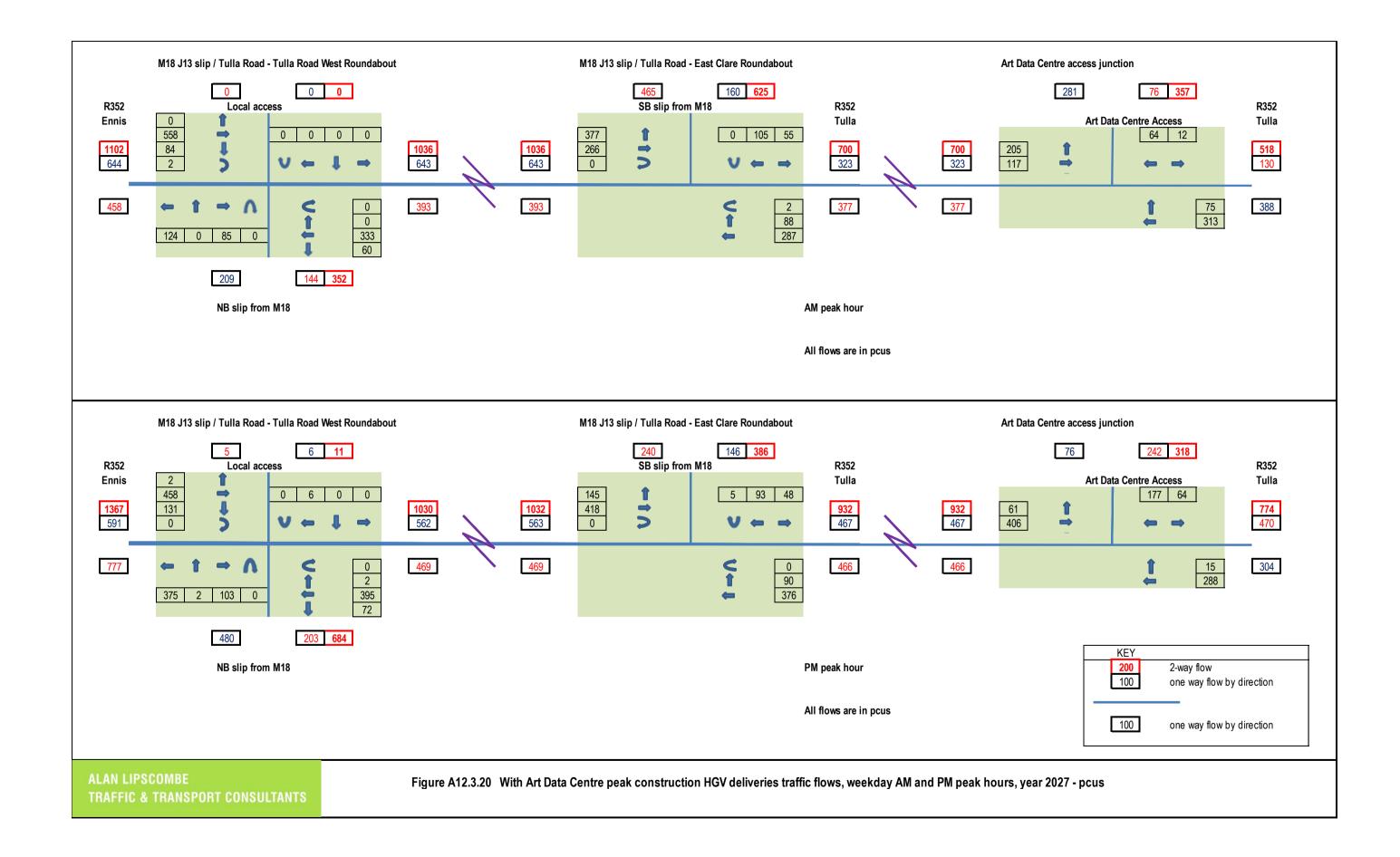


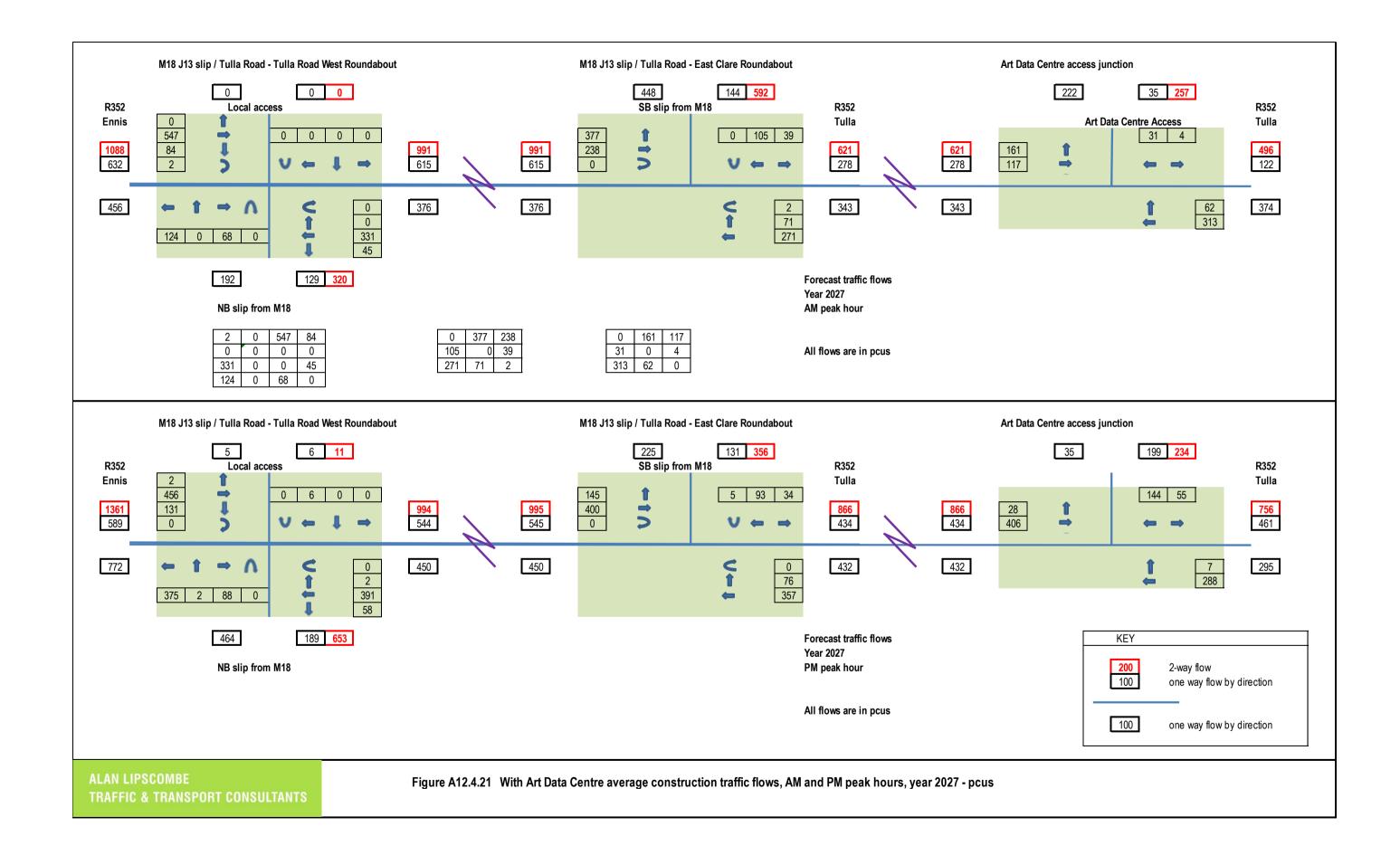


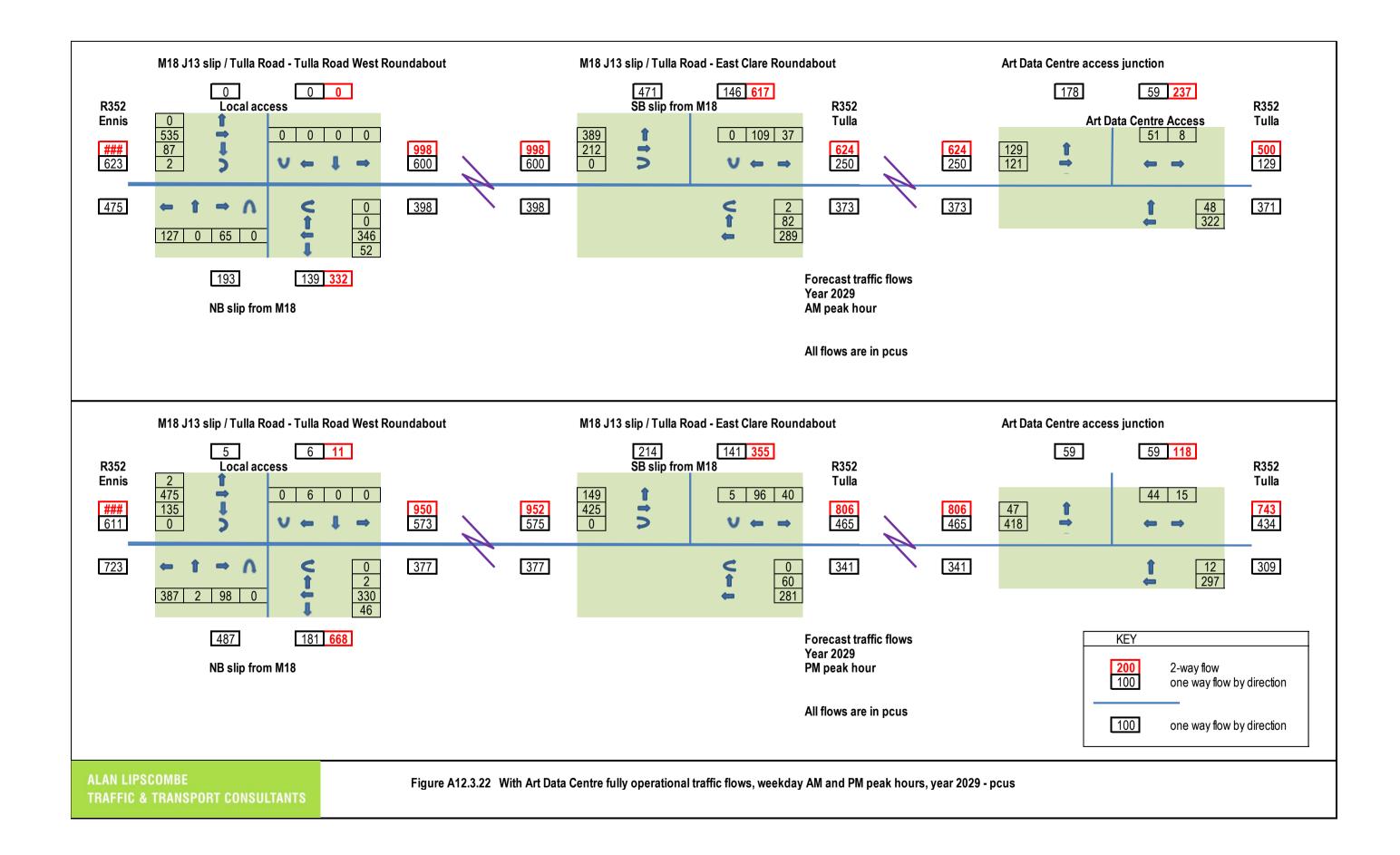


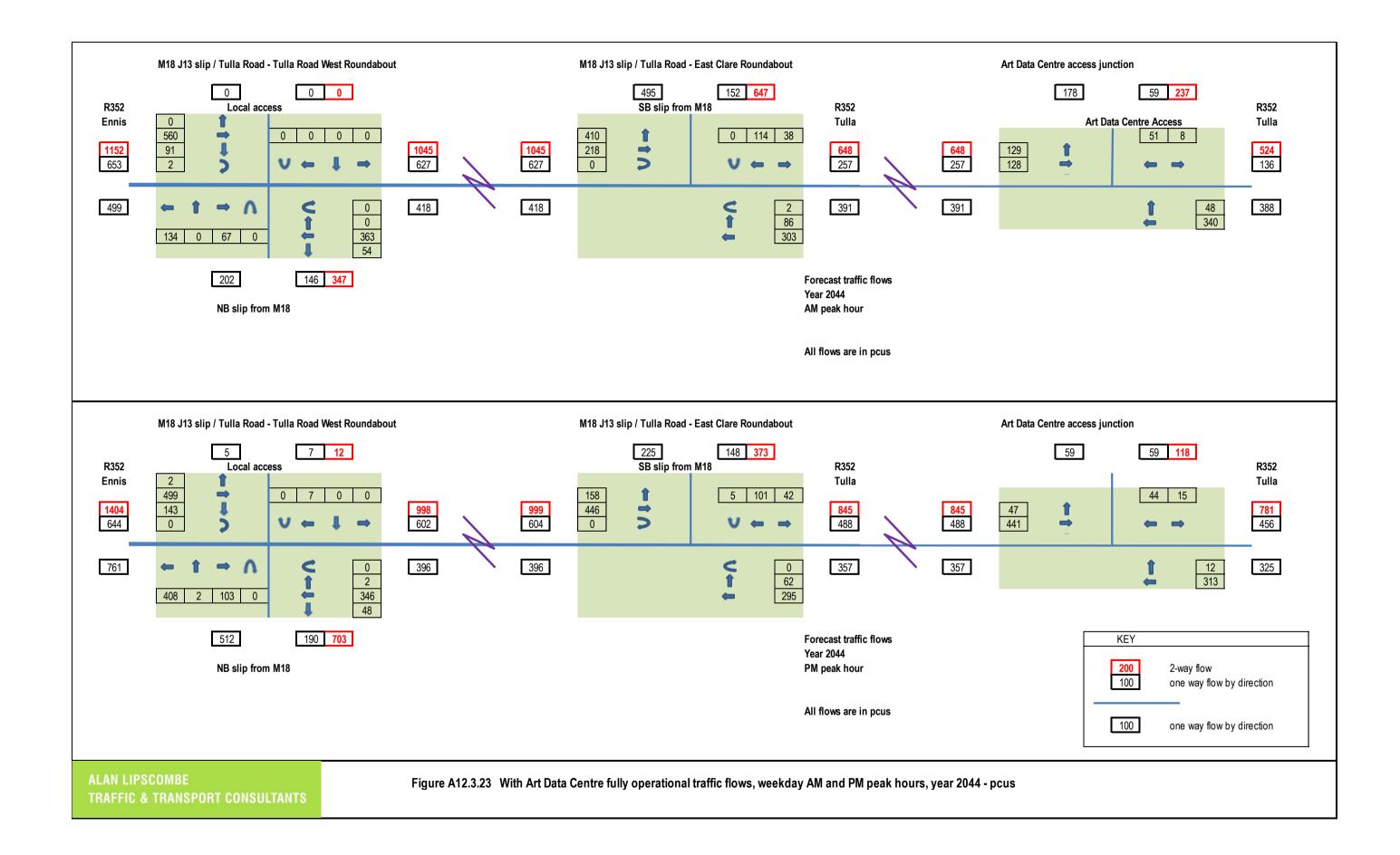












TRAFFIC FLOW TABLES

ALAN LIPSCOMBE TRAFFIC AND TRANSPORT

12.16 Forecast link flows, background, development generated, and with development (peak construction traffic), by time period and vehicle type, year 2027

12.17 Forecast link flows, background, development generated, and with development (peak HGV delivery construction traffic), by time period and vehicle type, year 2027

12.18 Forecast link flows, background, development generated, and with development (average construction traffic), by time period and vehicle type, year 2027

12.19 Forecast link flows, background, development generated, and with development (fully operational), by time period and vehicle type, year 2029

12.20 Forecast link flows, background, development generated, and with development (fully operational), by time period and vehicle type, year 2039

Time	Link		Backg	ground Yea	r 2027		A	dditional d	evelopmen	t traffic 202	27	v	Vith develo	opment 202	7	% Difference			
period		cars / Igvs	HGVs	All vehs	%HGVs	PCUs	cars / Igvs	HGVs	All vehs	%HGVs	PCUs	cars / Igvs	HGVs	All vehs	PCUs	cars / Igvs	HGVs	All vehs	PCUs
AM peak hour	1 Tulla Road east of site access	388	27	415	7%	453	109	2	111	2%	114	497	29	526	567	28%	7%	27%	25%
	2 Tulla Road west of site access	388	27	415	7%	453	312	6	318	2%	326	700	33	733	780	80%	22%	77%	72%
	3 Ste access	0	0	0	NA	0	421	8	429	2%	440	421	8	429	440	NA	NA	NA	NA
	4 Tulla Road betw een roundabouts	786	29	815	4%	855	252	3	255	1%	259	1,038	32	1,070	1,115	32%	10%	31%	30%
	5 M18 slip at East Clare roundabout	523	14	537	3%	556	60	3	63	5%	67	583	17	600	624	11%	22%	12%	12%
	6 Ennis Road	917	34	951	4%	998	194	0	194	0%	194	1,111	34	1,145	1,192	21%	0%	20%	19%
	7 Local access road	0	0	0	NA	0	0	0	0	NA	0	0	0	0	0	NA	NA	NA	NA
	8 M18 slip at Tulla Road West roundabout	244	20	264	8%	292	57	3	60	5%	64	301	23	324	356	23%	15%	23%	22%
	9 M18 motorw ay north of Tulla Road - n/b	510	30	540	6%	583	6	1	7	14%	8	516	31	547	591	1%	3%	1%	1%
	10 M18 motorw ay north of Tulla Road - s/b	676	40	716	6%	772	41	2	43	5%	46	717	42	759	818	6%	5%	6%	6%
	11 M18 motorw ay south of Tulla Road - n/b	510	30	540	6%	583	52	2	54	4%	57	562	32	594	639	10%	7%	10%	10%
	12 M18 motorw ay south of Tulla Road - s/b	676	40	716	6%	772	19	1	20	5%	21	695	41	736	793	3%	2%	3%	3%
PM peak hour	1 Tulla Road east of site access	644	29	673	4%	714	103	2	105	2%	108	747	31	778	821	16%	7%	16%	15%
	2 Tulla Road west of site access	644	29	673	4%	714	279	6	285	2%	293	923	35	958	1,007	43%	21%	42%	41%
	3 Ste access	0	0	0	NA	0	382	8	390	2%	401	382	8	390	401	NA	NA	NA	NA
	4 Tulla Road betw een roundabouts	810	26	836	3%	873	228	3	231	1%	235	1,038	29	1,067	1,108	28%	12%	28%	27%
	5 M18 slip at East Clare roundabout	301	12	313	4%	330	51	3	54	6%	58	352	15	367	388	17%	25%	17%	18%
	6 Ennis Road	1,196	37	1,233	3%	1284	176	0	176	0%	176	1,372	37	1,409	1,460	15%	0%	14%	14%
	7 Local access road	11	0	11	NA	11	0	0	0	NA	0	11	0	11	11	0%	NA	0%	0%
	8 M18 slip at Tulla Road West roundabout	589	17	606	3%	629	52	3	55	5%	59	641	20	661	688	9%	18%	9%	9%
	9 M18 motorw ay north of Tulla Road - n/b	856	51	906	6%	977	36	2	38	5%	41	892	53	944	1,018	4%	4%	4%	4%
	10 M18 motorw ay north of Tulla Road - s/b	713	42	755	6%	815	5	1	6	17%	7	718	43	761	822	1%	2%	1%	1%
	11 M18 motorw ay south of Tulla Road - n/b	856	51	906	6%	977	16	1	17	6%	18	872	52	923	996	2%	2%	2%	2%
	12 M18 motorw ay south of Tulla Road - s/b	713	42	755	6%	815	46	2	48	4%	51	759	44	803	865	6%	5%	6%	6%
All Day	1 Tulla Road east of site access	6,344	347	6,691	5%	7177	414	16	430	4%	452	6,758	363	7,121	7,630	7%	5%	6%	6%
	2 Tulla Road west of site access	6,344	347	6,691	5%	7177	1,488	62	1,550	4%	1637	7,832	409	8,241	8,814	23%	18%	23%	23%
	3 Ste access	0	0	0	NA	0	1,902	78	1,980	4%	2089	1,902	78	1,980	2,089	NA	NA	NA	NA
	4 Tulla Road betw een roundabouts	9,816	338	10,154	3%	10627	1,146	31	1,177	3%	1220	10,962	369	11,331	11,847	12%	9%	12%	11%
	5 M18 slip at East Clare roundabout	5,068	160	5,227	3%	5450	342	31	373	8%	416	5,410	191	5,600	5,867	7%	19%	7%	8%
	6 Ennis Road	12,997	432	13,429	3%	14033	827	0	827	0%	827	13,824	432	14,256	14,860	6%	0%	6%	6%
	7 Local access road	66	0	66	NA	66	0	0	0	NA	0	66	0	66	66	0%	NA	0%	0%
	8 M18 slip at Tulla Road West roundabout	5,124	225	5,349	4%	5664	319	31	350	9%	393	5,443	256	5,699	6,058	6%	14%	7%	7%
	9 M18 motorw ay north of Tulla Road - n/b	8,398	498	8,896	6%	9594	105	16	121	13%	143	8,503	514	9,017	9,737	1%	3%	1%	1%
	10 M18 motorw ay north of Tulla Road - s/b	8,540	507	9,046	6%	9756	95	16	111	14%	133	8,635	523	9,157	9,889	1%	3%	1%	1%
	11 M18 motorw ay south of Tulla Road - n/b	8,398	498	8,896	6%	9594	214	16	230	7%	252	8,612	514	9,126	9,846	3%	3%	3%	3%
	12 M18 motorw ay south of Tulla Road - s/b	8,540	507	9,046	6%	9756	247	16	263	6%	285	8,787	523	9,309	10,041	3%	3%	3%	3%

Table 12.16 Forecast links flows, background, development generated and with development (peak construction traffic), by time period and vehicle type, year 2027

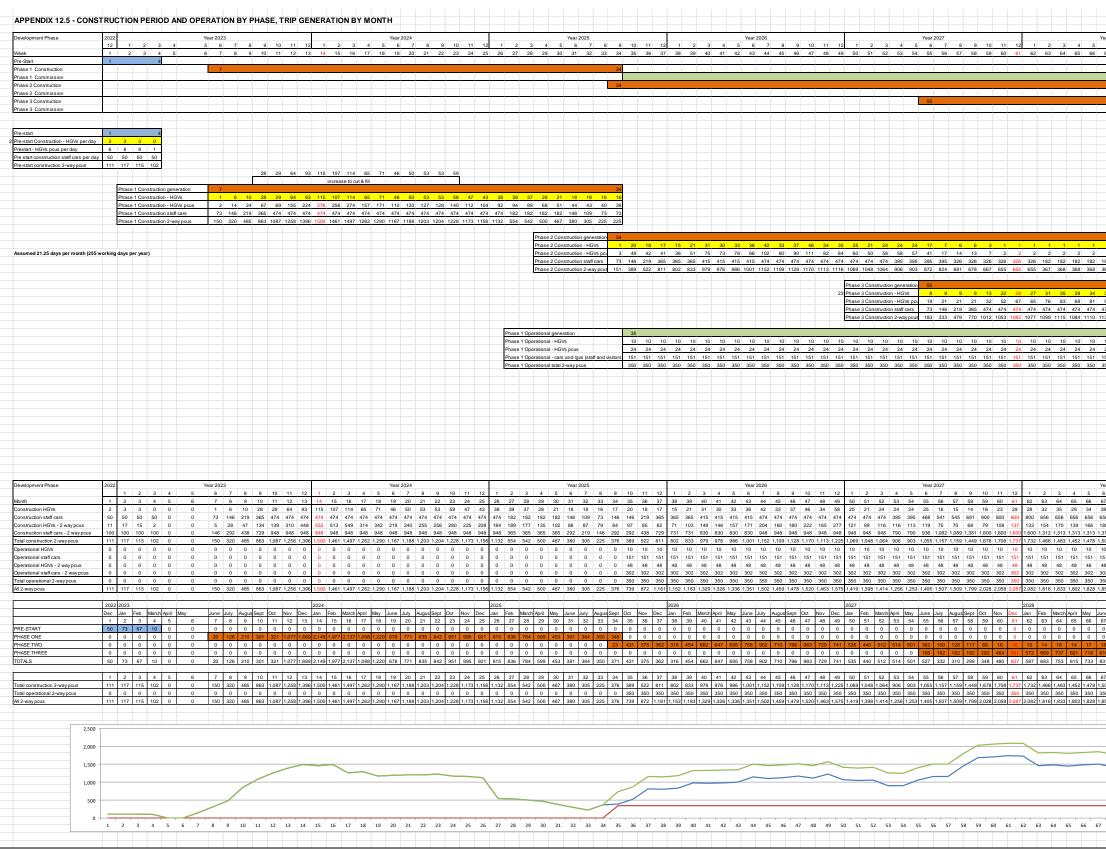
Time	Link		Backg	ground Yea	r 2027		A	dditional d	evelopmen	t traffic 202	7	V	Vith develo	pment 2027	7		% Diff	ference	
period		cars / Igvs	HGVs	All vehs	%HGVs	PCUs	cars / Igvs	HGVs	All vehs	%HGVs	PCUs	cars / Igvs	HGVs	All vehs	PCUs	cars / Igvs	HGVs	All vehs	PCUs
AM peak hour	1 Tulla Road east of site access	388	27	415	7%	453	71	7	78	9%	88	459	34	493	541	18%	25%	19%	19%
	2 Tulla Road west of site access	388	27	415	7%	453	204	27	231	12%	269	592	54	646	722	53%	98%	56%	59%
	3 Ste access	0	0	0	NA	0	275	34	309	11%	357	275	34	309	357	NA	NA	NA	NA
	4 Tulla Road betw een roundabouts	786	29	815	4%	855	164	14	178	8%	198	950	43	993	1,053	21%	48%	22%	23%
	5 M18 slip at East Clare roundabout	523	14	537	3%	556	40	14	54	26%	74	563	28	591	630	8%	102%	10%	13%
	6 Ennis Road	917	34	951	4%	998	127	0	127	0%	127	1,044	34	1,078	1,125	14%	0%	13%	13%
	7 Local access road	0	0	0	NA	0	0	0	0	NA	0	0	0	0	0	NA	NA	NA	NA
	8 M18 slip at Tulla Road West roundabout	244	20	264	8%	292	37	14	51	27%	71	281	34	315	362	15%	71%	19%	24%
	9 M18 motorw ay north of Tulla Road - n/b	510	30	540	6%	583	4	7	11	64%	21	514	37	551	603	1%	23%	2%	4%
	10 M18 motorw ay north of Tulla Road - s/b	676	40	716	6%	772	26	7	33	21%	43	702	47	749	815	4%	17%	5%	6%
	11 M18 motorw ay south of Tulla Road - n/b	510	30	540	6%	583	34	7	41	17%	51	544	37	581	633	7%	23%	8%	9%
	12 M18 motorw ay south of Tulla Road - s/b	676	40	716	6%	772	13	7	20	35%	30	689	47	736	802	2%	17%	3%	4%
PM peak hour	1 Tulla Road east of site access	644	29	673	4%	714	63	7	70	10%	80	707	36	743	793	10%	24%	10%	11%
	2 Tulla Road west of site access	644	29	673	4%	714	173	27	200	14%	238	817	56	873	951	27%	93%	30%	33%
	3 Ste access	0	0	0	NA	0	236	34	270	13%	318	236	34	270	318	NA	NA	NA	NA
	4 Tulla Road betw een roundabouts	810	26	836	3%	873	141	14	155	9%	175	951	40	991	1,047	17%	54%	19%	20%
	5 M18 slip at East Clare roundabout	301	12	313	4%	330	31	14	45	31%	65	332	26	358	394	10%	115%	14%	20%
	6 Ennis Road	1,196	37	1,233	3%	1284	108	0	108	0%	108	1,304	37	1,341	1,392	9%	0%	9%	8%
	7 Local access road	11	0	11	NA	11	0	0	0	NA	0	11	0	11	11	0%	NA	0%	0%
	8 M18 slip at Tulla Road West roundabout	589	17	606	3%	629	33	14	47	30%	67	622	31	653	696	6%	83%	8%	11%
	9 M18 motorw ay north of Tulla Road - n/b	856	51	906	6%	977	22	7	29	24%	39	878	58	935	1,016	3%	14%	3%	4%
	10 M18 motorw ay north of Tulla Road - s/b	713	42	755	6%	815	3	7	10	70%	20	716	49	765	834	0%	17%	1%	2%
	11 M18 motorw ay south of Tulla Road - n/b	856	51	906	6%	977	11	7	18	39%	28	867	58	924	1,005	1%	14%	2%	3%
	12 M18 motorw ay south of Tulla Road - s/b	713	42	755	6%	815	28	7	35	20%	45	741	49	790	859	4%	17%	5%	6%
All Day	1 Tulla Road east of site access	6,344	347	6,691	5%	7177	206	46	252	18%	316	6,550	393	6,943	7,494	3%	13%	4%	4%
	2 Tulla Road west of site access	6,344	347	6,691	5%	7177	742	184	926	20%	1184	7,086	531	7,617	8,361	12%	53%	14%	16%
	3 Ste access	0	0	0	NA	0	948	230	1,178	20%	1500	948	230	1,178	1,500	NA	NA	NA	NA
	4 Tulla Road betw een roundabouts	9,816	338	10,154	3%	10627	571	92	663	14%	792	10,387	430	10,817	11,419	6%	27%	7%	7%
	5 M18 slip at East Clare roundabout	5,068	160	5,227	3%	5450	171	92	263	35%	392	5,239	252	5,490	5,842	3%	58%	5%	7%
	6 Ennis Road	12,997	432	13,429	3%	14033	412	0	412	0%	412	13,409	432	13,841	14,445	3%	0%	3%	3%
	7 Local access road	66	0	66	NA	66	0	0	0	NA	0	66	0	66	66	0%	NA	0%	0%
	8 M18 slip at Tulla Road West roundabout	5,124	225	5,349	4%	5664	159	92	251	37%	380	5,283	317	5,600	6,044	3%	41%	5%	7%
	9 M18 motorw ay north of Tulla Road - n/b	8,398	498	8,896	6%	9594	52	46	98	47%	162	8,450	544	8,994	9,756	1%	9%	1%	2%
	10 M18 motorw ay north of Tulla Road - s/b	8,540	507	9,046	6%	9756	47	46	93	49%	157	8,587	553	9,139	9,913	1%	9%	1%	2%
	11 M18 motorw ay south of Tulla Road - n/b	8,398	498	8,896	6%	9594	107	46	153	30%	217	8,505	544	9,049	9,811	1%	9%	2%	2%
	12 M18 motorw ay south of Tulla Road - s/b	8,540	507	9,046	6%	9756	123	46	169	27%	233	8,663	553	9,215	9,989	1%	9%	2%	2%

Table 12.17 Forecast links flows, background, development generated and with development (peak HGV construction traffic), by time period and vehicle type, year 2027

Time	Link		Backg	ground Yea	r 2027		Δ	dditional d	levelopmen	nt traffic 202	27	v	Vith develo	opment 2027	7	% Difference				
period		cars / Igvs	HGVs	All vehs	%HGVs	PCUs	cars / Igvs	HGVs	All vehs	%HGVs	PCUs	cars / Igvs	HGVs	All vehs	PCUs	cars / Igvs	HGVs	All vehs	PCUs	
AM peak hour	1 Tulla Road east of site access	388	27	415	7%	453	64	1	65	2%	67	452	29	480	520	17%	4%	16%	15%	
	2 Tulla Road west of site access	388	27	415	7%	453	182	4	186	2%	190	570	31	601	644	47%	13%	45%	42%	
	3 Ste access	0	0	0	NA	0	245	5	250	2%	256	245	5	250	256	NA	NA	NA	NA	
	4 Tulla Road betw een roundabouts	786	29	815	4%	855	146	2	148	1%	150	932	31	963	1,006	19%	6%	18%	18%	
	5 M18 slip at East Clare roundabout	523	14	537	3%	556	35	2	37	5%	39	558	16	574	596	7%	13%	7%	7%	
	6 Ennis Road	917	34	951	4%	998	113	0	113	0%	113	1,030	34	1,064	1,111	12%	0%	12%	11%	
	7 Local access road	0	0	0	NA	0	0	0	0	NA	0	0	0	0	0	NA	NA	NA	NA	
	8 M18 slip at Tulla Road West roundabout	244	20	264	8%	292	33	2	35	5%	37	277	22	299	329	14%	9%	13%	13%	
	9 M18 motorw ay north of Tulla Road - n/b	510	30	540	6%	583	3	1	4	16%	4	513	31	544	587	1%	2%	1%	1%	
	10 M18 motorw ay north of Tulla Road - s/b	676	40	716	6%	772	24	1	25	5%	27	700	41	741	799	4%	3%	4%	3%	
	11 M18 motorw ay south of Tulla Road - n/b	510	30	540	6%	583	30	1	31	4%	33	540	31	571	615	6%	4%	6%	6%	
-	12 M18 motorw ay south of Tulla Road - s/b	676	40	716	6%	772	11	1	12	5%	12	687	41	727	784	2%	1%	2%	2%	
PM peak hour	1 Tulla Road east of site access	644	29	673	4%	714	60	1	61	2%	63	704	30	734	776	9%	4%	9%	9%	
	2 Tulla Road west of site access	644	29	673	4%	714	162	4	166	2%	170	806	33	838	884	25%	12%	25%	24%	
	3 Ste access	0	0	0	NA	0	222	5	227	2%	233	222	5	227	233	NA	NA	NA	NA	
	4 Tulla Road betw een roundabouts	810	26	836	3%	873	133	2	135	1%	137	943	28	971	1,010	16%	7%	16%	16%	
	5 M18 slip at East Clare roundabout	301	12	313	4%	330	30	2	32	6%	34	331	14	345	364	10%	14%	10%	10%	
	6 Ennis Road	1,196	37	1,233	3%	1284	102	0	102	0%	102	1,298	37	1,335	1,386	9%	0%	8%	8%	
	7 Local access road	11	0	11	NA	11	0	0	0	NA	0	11	0	11	11	0%	NA	0%	0%	
	8 M18 slip at Tulla Road West roundabout	589	17	606	3%	629	30	2	32	6%	34	619	19	638	664	5%	11%	5%	5%	
	9 M18 motorw ay north of Tulla Road - n/b	856	51	906	6%	977	21	1	22	5%	24	877	52	929	1,001	2%	2%	2%	2%	
	10 M18 motorw ay north of Tulla Road - s/b	713	42	755	6%	815	30	1	31	2%	31	743	43	786	846	4%	1%	4%	4%	
	11 M18 motorw ay south of Tulla Road - n/b	856	51	906	6%	977	9	1	10	6%	10	865	51	916	988	1%	1%	1%	1%	
	12 M18 motorw ay south of Tulla Road - s/b	713	42	755	6%	815	27	1	28	4%	30	740	43	784	844	4%	3%	4%	4%	
All Day	1 Tulla Road east of site access	6,344	347	6,691	5%	7177	244	9	254	254	267	6,588	357	6,945	7,444	4%	3%	4%	4%	
	2 Tulla Road west of site access	6,344	347	6,691	5%	7177	878	37	915	915	966	7,222	384	7,605	8,143	14%	11%	14%	13%	
	3 Ste access	0	0	0	NA	0	1,122	46	1,168	1,168	1233	1,122	46	1,168	1,233	NA	NA	NA	NA	
	4 Tulla Road betw een roundabouts	9,816	338	10,154	3%	10627	676	18	694	694	720	10,492	356	10,848	11,347	7%	5%	7%	7%	
	5 M18 slip at East Clare roundabout	5,068	160	5,227	3%	5450	202	18	220	220	246	5,269	178	5,447	5,696	4%	11%	4%	5%	
	6 Ennis Road	12,997	432	13,429	3%	14033	488	0	488	488	488	13,485	432	13,917	14,521	4%	0%	4%	3%	
	7 Local access road	66	0	66	NA	66	0	0	0	0	0	66	0	66	66	0%	NA	0%	0%	
	8 M18 slip at Tulla Road West roundabout	5,124	225	5,349	4%	5664	188	18	207	207	232	5,312	244	5,556	5,896	4%	8%	4%	4%	
	9 M18 motorw ay north of Tulla Road - n/b	8,398	498	8,896	6%	9594	62	9	71	71	85	8,460	508	8,968	9,678	1%	2%	1%	1%	
	10 M18 motorw ay north of Tulla Road - s/b	8,540	507	9,046	6%	9756	56	9	65	65	79	8,596	516	9,112	9,834	1%	2%	1%	1%	
	11 M18 motorw ay south of Tulla Road - n/b	8,398	498	8,896	6%	9594	126	9	136	136	149	8,524	508	9,032	9,743	2%	2%	2%	2%	
	12 M18 motorw ay south of Tulla Road - s/b	8,540	507	9,046	6%	9756	146	9	155	155	168	8,686	516	9,202	9,924	2%	2%	2%	2%	

Table 12.18 Forecast links flows, background, development generated and with development (average construction traffic), by time period and vehicle type, year 2027

Time	Link	Background Year 2029					A	dditional d	evelopmen	t traffic 202	9	V	Vith develo	opment 2029	9	% Difference			
period		cars / Igvs	HGVs	All vehs	%HGVs	PCUs	cars / Igvs	HGVs	All vehs	%HGVs	PCUs	cars / Igvs	HGVs	All vehs	PCUs	cars / Igvs	HGVs	All vehs	PCUs
AM peak hour	1 Tulla Road east of site access	400	28	428	6.6%	444	50	3	53	6%	57	450	31	481	501	13%	11%	12%	13%
	2 Tulla Road w est of site access	400	28	428	6.6%	444	153	11	164	7%	179	553	39	592	623	38%	39%	38%	40%
	3 Ste access	0	0	0	NA	0	203	14	217	6%	237	203	14	217	237	NA	NA	NA	NA
	4 Tulla Road betw een roundabouts	810	30	840	3.6%	865	120	6	126	5%	134	930	36	966	1,000	15%	20%	15%	16%
	5 M18 slip at East Clare roundabout	540	14	554	2.6%	569	34	6	40	15%	48	574	20	594	618	6%	42%	7%	8%
	6 Ennis Road	945	35	980	3.5%	1,005	92	0	92	0%	92	1,037	35	1,072	1,097	10%	0%	9%	9%
	7 Local access road	0	0	0	NA	0	0	0	0	NA	0	0	0	0	0	NA	NA	NA	NA
	8 M18 slip at Tulla Road West roundabout	252	20	272	7.5%	291	27	6	33	18%	41	279	26	305	332	11%	29%	12%	14%
	9 M18 motorw ay north of Tulla Road - n/b	526	31	557	5.6%	601	5	3	8	38%	12	531	34	565	613	1%	10%	1%	2%
	10 M18 motorw ay north of Tulla Road - s/b	696	41	738	5.6%	796	18	3	21	14%	25	714	44	759	821	3%	7%	3%	3%
	11 M18 motorw ay south of Tulla Road - n/b	526	31	557	5.6%	601	23	3	26	12%	30	549	34	583	631	4%	10%	5%	5%
	12 M18 motorw ay south of Tulla Road - s/b	696	41	738	5.6%	796	16	3	19	16%	23	712	44	757	819	2%	7%	3%	3%
PM peak hour	1 Tulla Road east of site access	664	30	694	4.3%	716	20	3	23	13%	27	684	33	717	743	3%	10%	3%	4%
	2 Tulla Road west of site access	664	30	694	4.3%	716	84	11	95	12%	110	748	41	789	826	13%	37%	14%	15%
	3 Ste access	0	0	0	NA	0	64	14	78	18%	98	64	14	78	98	NA	NA	NA	NA
	4 Tulla Road betw een roundabouts	835	27	862	3.1%	884	54	6	60	10%	68	889	33	922	952	6%	22%	7%	8%
	5 M18 slip at East Clare roundabout	310	13	322	3.9%	332	10	6	16	38%	24	320	19	338	356	3%	48%	5%	7%
	6 Ennis Road	1,233	38	1,271	3.0%	1,298	37	0	37	0%	37	1,270	38	1,308	1,335	3%	0%	3%	3%
	7 Local access road	11	0	11	0.0%	11	0	0	0	NA	0	11	0	11	11	0%	NA	0%	0%
	8 M18 slip at Tulla Road West roundabout	607	17	625	2.8%	637	18	6	24	25%	32	625	23	649	670	3%	35%	4%	5%
	9 M18 motorw ay north of Tulla Road - n/b	882	52	934	5.6%	1,008	5	3	8	38%	12	887	55	942	1,020	1%	6%	1%	1%
	10 M18 motorw ay north of Tulla Road - s/b	735	44	779	5.6%	840	4	3	7	43%	11	739	47	786	851	1%	7%	1%	1%
	11 M18 motorw ay south of Tulla Road - n/b	882	52	934	5.6%	1,008	13	3	16	19%	20	895	55	950	1,028	1%	6%	2%	2%
	12 M18 motorw ay south of Tulla Road - s/b	735	44	779	5.6%	840	6	3	9	33%	13	741	47	788	853	1%	7%	1%	2%
All Day	1 Tulla Road east of site access	6,540	358	6,898	5.2%	7,130	201	14	215	7%	235	6,741	372	7,113	7,365	3%	4%	3%	3%
	2 Tulla Road west of site access	6,540	358	6,898	5.2%	7,130	725	56	781	7%	859	7,265	414	7,679	7,990	11%	16%	11%	12%
	3 Ste access	0	0	0	NA	0	926	70	996	7%	1094	926	70	996	1,094	NA	NA	NA	NA
	4 Tulla Road betw een roundabouts	10,120	348	10,468	3.3%	10,758	558	28	586	5%	625	10,678	376	11,054	11,383	6%	8%	6%	6%
	5 M18 slip at East Clare roundabout	5,224	164	5,389	3.1%	5,544	167	28	195	14%	234	5,391	192	5,584	5,778	3%	17%	4%	4%
	6 Ennis Road	13,399	445	13,844	3.2%	14,164	403	0	403	0%	403	13,802	445	14,247	14,567	3%	0%	3%	3%
	7 Local access road	68	0	68	0.0%	68	0	0	0	NA	0	68	0	68	68	0%	NA	0%	0%
	8 M18 slip at Tulla Road West roundabout	5,282	232	5,515	4.2%	5,708	155	28	183	15%	222	5,437	260	5,698	5,930	3%	12%	3%	4%
	9 M18 motorw ay north of Tulla Road - n/b	8,658	514	9,171	5.6%	9,891	51	14	65	22%	85	8,709	528	9,236	9,975	1%	3%	1%	1%
	10 M18 motorw ay north of Tulla Road - s/b	8,804	522	9,326	5.6%	10,057	46	14	60	23%	80	8,850	536	9,386	10,137	1%	3%	1%	1%
	11 M18 motorw ay south of Tulla Road - n/b	8,658	514	9,326	5.5%	9,891	104	14	118	12%	138	8,762	528	9,289	10,028	1%	3%	1%	1%
	12 M18 motorw ay south of Tulla Road - s/b	8,804	522	9,326	5.6%	10,057	120	14	134	10%	154	8,924	536	9,460	10,211	1%	3%	1%	2%


Table 12.19 Forecast links flows, background, development generated and with development (fully operational), by time period and vehicle type, year 2029

Time	Link		Backg	ground Year	2044		A	dditional d	levelopmen	nt traffic 204	4	v	Vith develo	opment 2044	4	% Difference			
period		cars / Igvs	HGVs	All vehs	%HGVs	PCUs	cars / Igvs	HGVs	All vehs	%HGVs	PCUs	cars / Igvs	HGVs	All vehs	PCUs	cars / Igvs	HGVs	All vehs	PCUs
AM peak hour	1 Tulla Road east of site access	421	30	451	6.6%	468	50	3	53	0	57	471	33	504	525	12%	10%	12%	12%
	2 Tulla Road west of site access	421	30	451	6.6%	468	153	11	164	0	179	574	41	615	647	36%	37%	36%	38%
	3 Ste access	0	0	0	NA	0	203	14	217	0	237	203	14	217	237	NA	NA	NA	NA
	4 Tulla Road betw een roundabouts	854	32	885	3.6%	912	120	6	126	0	134	974	38	1,011	1,046	14%	19%	14%	15%
	5 M18 slip at East Clare roundabout	569	15	584	2.6%	600	34	6	40	0	48	603	21	624	649	6%	40%	7%	8%
	6 Ennis Road	996	36	1,033	3.5%	1,059	92	0	92	0	92	1,088	36	1,125	1,151	9%	0%	9%	9%
	7 Local access road	0	0	0	NA	0	0	0	0	NA	0	0	0	0	0	NA	NA	NA	NA
	8 M18 slip at Tulla Road West roundabout	265	22	287	7.5%	307	27	6	33	0	41	292	28	320	348	10%	28%	12%	13%
	9 M18 motorw ay north of Tulla Road - n/b	554	33	587	5.6%	633	2	1	3	3	5	556	34	590	638	0%	4%	1%	1%
	10 M18 motorw ay north of Tulla Road - s/b	734	44	778	5.6%	839	13	1	3	14	16	747	45	792	855	2%	3%	0%	2%
	11 M18 motorw ay south of Tulla Road - n/b	554	33	587	5.6%	633	17	1	3	18	20	571	34	605	653	3%	4%	1%	3%
	12 M18 motorw ay south of Tulla Road - s/b	734	44	778	5.6%	839	7	1	3	8	10	741	45	786	849	1%	3%	0%	1%
PM peak hour	1 Tulla Road east of site access	700	32	731	4.3%	754	20	3	23	0	27	720	35	754	782	3%	10%	3%	4%
	2 Tulla Road west of site access	700	32	731	4.3%	754	84	11	95	0	110	784	43	826	865	12%	35%	13%	15%
	3 Ste access	0	0	0	NA	0	64	14	78	0	98	64	14	78	98	NA	NA	NA	NA
	4 Tulla Road betw een roundabouts	880	28	909	3.1%	932	54	6	60	0	68	934	34	969	1,000	6%	21%	7%	7%
	5 M18 slip at East Clare roundabout	327	13	340	3.9%	350	10	6	16	0	24	337	19	356	374	3%	45%	5%	7%
	6 Ennis Road	1,300	40	1,340	3.0%	1,368	37	0	37	0	37	1,337	40	1,377	1,405	3%	0%	3%	3%
	7 Local access road	12	0	12	0.0%	12	0	0	0	NA	0	12	0	12	12	0%	NA	0%	0%
	8 M18 slip at Tulla Road West roundabout	640	18	658	2.8%	671	18	6	24	0	32	658	24	682	704	3%	33%	4%	5%
	9 M18 motorw ay north of Tulla Road - n/b	930	55	985	5.6%	1,062	3	1	3	4	6	933	56	989	1,068	0%	2%	0%	1%
	10 M18 motorw ay north of Tulla Road - s/b	775	46	821	5.6%	885	2	1	3	3	5	777	47	824	890	0%	3%	0%	1%
	11 M18 motorw ay south of Tulla Road - n/b	930	55	985	5.6%	1,062	7	1	3	8	10	937	56	993	1,072	1%	2%	0%	1%
	12 M18 motorw ay south of Tulla Road - s/b	775	46	821	5.6%	885	4	1	3	5	7	779	47	826	892	1%	3%	0%	1%
All Day	1 Tulla Road east of site access	6,893	377	7,270	5.2%	7,515	201	14	215	7%	235	7,094	391	7,485	7,750	3%	4%	3%	3%
	2 Tulla Road west of site access	6,893	377	7,270	5.2%	7,515	725	56	781	7%	859	7,618	433	8,051	8,374	11%	15%	11%	11%
	3 Ste access	0	0	0	NA	0	926	70	996	7%	1094	926	70	996	1,094	NA	NA	NA	NA
	4 Tulla Road betw een roundabouts	10,666	367	11,033	3.3%	11,339	558	28	586	5%	625	11,224	395	11,619	11,964	5%	8%	5%	6%
	5 M18 slip at East Clare roundabout	5,506	173	5,680	3.1%	5,843	167	28	195	14%	234	5,673	201	5,875	6,077	3%	16%	3%	4%
	6 Ennis Road	14,122	469	14,591	3.2%	14,928	403	0	403	0%	403	14,525	469	14,994	15,331	3%	0%	3%	3%
	7 Local access road	71	0	71	0.0%	71	0	0	0	NA	0	71	0	71	71	0%	NA	0%	0%
	8 M18 slip at Tulla Road West roundabout	5,567	245	5,812	4.2%	6,016	155	28	183	15%	222	5,722	273	5,995	6,238	3%	11%	3%	4%
	9 M18 motorw ay north of Tulla Road - n/b	9,125	541	9,666	5.6%	10,424	51	14	65	22%	85	9,176	555	9,731	10,509	1%	3%	1%	1%
	10 M18 motorw ay north of Tulla Road - s/b	9,279	550	9,830	5.6%	10,600	46	14	60	23%	80	9,325	564	9,890	10,680	0%	3%	1%	1%
	11 M18 motorw ay south of Tulla Road - n/b	9,125	541	9,830	5.5%	10,424	104	14	118	12%	138	9,229	555	9,784	10,562	1%	3%	1%	1%
	12 M18 motorw ay south of Tulla Road - s/b	9,279	550	9,830	5.6%	10,600	120	14	134	10%	154	9,399	564	9,964	10,754	1%	3%	1%	1%

Table 12.20 Forecast links flows, background, development generated and with development (fully operational), by time period and vehicle type, year 2044

CHART – CONSTRUCTION PERIOD AND OPERATION BY PHASE, TRIP GENERATION BY MONTH

ALAN LIPSCOMBE TRAFFIC AND TRANSPORT

11 12 1 2 3 4 5 6 7 8 9 10 72 73 74 75 76 77 78 79 80 81 1	
72 73 74 75 76 77 78 79 80 81	11 1
80	
80	
81	
80	
1 1 1 1 1 1 0 2 2 2 2 2 2 2 0 0	
73 73 73 73 73 73 73 73 150 150 150 149 150 150 150 147	
80 32 32 34 25 22 12 13 12 3	
76 77 83 61 53 29 31 29 7 474 474 474 182 182 146 109 73 73	
1100 1101 1113 486 471 350 281 203 160	
	40
10 10<	24 2
151 151 <td>151 15 350 35</td>	151 15 350 35
Phase 2 Operational generation 81	
Phase 2 Operational - HGVs 12 12 12	12 1
Phase 2 Operational - HGVs pcus 29 29 29 Phase 2 Operational - cars and Igvs (staff and visitors 191 191 191	29 2 191 19
Phase 2 Operational total 2-way pcus 440 440 440	440 44
Phase 3 Operational generation 81 Phase 2 Operational - HGVs 10 10 10	10 1
Phase 2 Operational - HGVs pcus 24 24 24	24 2
	151 15 350 35
Year 2029	
	11 12
11 12 1 2 3 4 5 6 7 8 9 10 72 73 74 75 76 77 78 79 80 81 82 83 14	84 85
11 12 1 2 3 4 5 6 7 8 9 10 72 73 74 75 76 77 78 79 80 81 82 83 32 33 35 26 23 13 14 13 3 0 0 0 747 747 547 255 219 182 146 146 0 0 0 0	84 85 0 0 0 0
11 12 1 2 3 4 5 6 7 8 9 10 72 73 74 75 76 77 78 79 80 81 82 83 1 2 33 35 26 23 13 1 1 3 3 0 0 0 547 547 255 255 219 182 146 146 0 0 0 155 156 169 125 109 61 66 61 14 0 0 0 004/1.094 1.094 511 511 430 365 283 283 0 0 0	84 85 0 0
11 12 1 2 3 4 5 6 7 8 9 10 72 73 74 75 76 77 78 79 80 81 82 83 3 3 3 0 0 0 547 547 555 255 219 182 146 146 0 0 0 155 156 169 125 109 61 66 61 14 0 0 0 0 194 1094 151 113 39 352 233 0 0 0 0 1250 1261 1283 635 620 499 431 353 307 0 0 0	84 85 0 0 0 0 0 0 0 0 0 0 0 0
11 12 1 2 3 4 5 6 7 8 9 10 72 73 74 75 76 77 78 79 80 81 82 83 1 2 33 35 26 23 13 3 0 0 0 547 547 547 255 219 182 146 146 0 0 0 155 156 169 125 109 61 66 61 14 0 0 0 1004 104 105 114 430 865 232 233 0 0 0 0 1250 125 126 620 499 431 353 307 0 0 0 0 0 10 10 10 10 10 10 10 10 10 10 10 10 123	84 85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 32 493 493
11 12 1 2 3 4 5 6 7 8 9 10 72 73 74 75 76 77 78 79 80 81 82 83 13 14 13 3 0 0 0 0 547 547 547 255 251 13 14 13 3 0 0 0 0 0 15 156 16 14 14 0 0 0 1 144 14 0 0 0 0 1 144 14 0 0 0 0 1 144 14 0 0 0 0 1 144 14 0 <t< td=""><td>84 85 0 0 0 0 0 0 0 0 0 0 0 0 32 32 493 493 154 154 986 986</td></t<>	84 85 0 0 0 0 0 0 0 0 0 0 0 0 32 32 493 493 154 154 986 986
11 12 1 2 3 4 5 6 7 8 9 10 72 73 74 75 76 77 78 79 80 81 82 83 7 72 73 74 75 76 77 78 79 80 81 82 83 7 547 547 547 252 251 18 16 14 0	84 85 0 0 0 0 0 0 0 0 0 0 0 0 32 32 493 493 154 154 986 986 1,140 1,144
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	84 85 0 0 0 0 0 0 0 0 0 0 0 0 32 32 493 493 154 154 986 986 1,140 1,144
11 12 1 2 3 4 5 6 7 8 9 10 72 73 74 75 76 77 79 80 81 82 83 12 33 35 26 23 33 3 0	84 85 0 0 0 0 0 0 0 0 0 0 0 0 32 32 493 493 154 154 986 986 1,140 1,144
11 12 1 2 3 4 5 6 7 8 9 10 72 73 74 75 76 77 78 79 80 81 82 83 13 33 35 26 23 13 14 13 3 0 0 0 0 547 547 547 255 251 18 16 14 0 0 0 0 0 10 10 10 0	84 85 0 0 0 0 0 0 0 0 0 0 0 0 32 32 493 493 154 154 986 986 1,140 1,144
11 12 1 2 3 4 5 6 7 8 9 10 72 73 74 75 76 77 78 79 80 81 82 83 45 56 7 78 79 80 81 82 83 45 57 78 79 80 81 82 83 45 57 78 74 74 75 76 76 76 77 78 70 80 81 82 83 4 15 16 16 14 14 0 0 0 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 14 14 14 14 14 14 14 14 14 14 14 14 14 15 151 151 151 151 151	84 85 0 0 0 0 0 0 0 0 0 0 0 0 32 32 493 493 154 154 986 986 1,140 1,144
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	84 85 0 0 0 0 0 0 0 0 0 0 0 0 32 32 493 493 154 154 986 986 1,140 1,144
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	84 85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 32 32 493 493 493 154 154 986 1,140 1,140 1,141 1,140 1,140 1,141
11 12 1 2 3 4 5 6 7 8 9 10 72 73 74 75 76 77 78 79 80 81 82 83 75 72 73 74 75 76 77 78 79 80 81 82 83 7 74 74 74 255 251 16 16 14 14 0 0 0 1 1.041 1.02 1.025 1.03 1.30 83 233 233 0 0 0 0 1 1.041 1.01 10 10 10 10 10 10 323 232 22 2 2 12 12 12 12 12 13 131 131 151 151 151 151 151 151 151 151 151 151 151	84 85 0 0 0 0 0 0 0 0 0 0 0 0 32 32 493 493 154 154 986 986 1,140 1,144
11 12 1 2 3 4 5 6 7 8 9 10 72 73 74 75 76 77 78 79 80 81 82 83 75 76 77 77 79 80 81 82 83 75 75 75 77 78 79 80 81 82 83 75 75 76 77 78 79 80 81 82 83 70 0<	84 85 0 0 0 0 0 0 0 0 0 0 0 0 32 32 493 493 493 495 154 154 154 154 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140
11 12 1 2 3 4 5 6 7 8 9 10 72 73 7 75 76 70 78 79 80 81 82 83 7 72 73 74 75 76 77 78 80 81 82 83 7 74 74 74 252 251 18 16 14 0 0 0 0 1.044 1.025 105 165 165 165 165 14 40 0	84 85 0 0 0 0 0 0 0 0 0 0 0 0 32 32 493 493 493 495 154 154 154 154 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140

Art Data Centre Outline Travel Plan

ALAN LIPSCOMBE TRAFFIC AND TRANSPORT

ALAN LIPSCOMBE TRAFFIC & TRANSPORT CONSULTANTS

OUTLINE WORK PLACE TRAVEL PLAN

ART DATA CENTRE – ENNIS CAMPUS

Toureen, Ennis, County Clare

Alan Lipscombe Traffic & Transport Consultants Ltd Claran, Headford, Co Galway

> Email <u>-Info@alipscombetraffic.ie</u> Tel – 093 34777 Mob – 087 9308134

Client: Art Data Centres July 8th, 2021 AL Project No: 8081

ART DATA CENTRE - ENNIS CAMPUS - OUTLINE WORKPLACE TRAVEL PLAN | 1

1 INTRODUCTION

A significant development is proposed on the eastern outskirts of Ennis in the townland of Tooreen and Cahernalough, County Clare. The proposed development, referred to as the Art Data Centre, is located on the northern side of the R352 Tulla Road approximately 1 km to the east of the M18 Motorway, which bypasses the town of Ennis to the east, and approximately 4.5 kms to the east of Ennis town centre.

The proposed development will be constructed in 3 phases. It is forecast that Phase 1 will become operational in September 2025, when 151 staff members will be employed on site, Phase 2 will be complete in July 2029, when a total of 342 staff will be employed on site, with the Art Data Centre forecast to be fully operational by July 2029, when it is forecast that 493 staff will be employed on site.

In accordance with the requirements of the current Clare County Council Development Plan 2017 to 2023, the Applicants for the Art Data Centre commit to developing, implementing and maintaining a **Workplace Travel Plan**¹ in accordance with the guidelines set out by the National Transport Authority.

It is proposed that the preparation of a detailed Travel Plan will be prepared and agreed with Clare County Council prior to the completion of Phase 1 of the Art Data Centre, with data from staff surveys conducted on the opening of each phase used to identify feasible alternative travel modes to the private car. It is proposed that the Art Data Centre will apply to the NTA to avail of the **Smarter Travel Work Place Package.** As stated above, with a total of 493 employees forecast for the completed Art Data Centre, the site would exceed the >250 staff members limit on order to benefit from the scheme. During the formulation of the plan the management of the Art Data Centre will work together with the NTA to undertake the following;

- Conduct online staff travel surveys,
- Undertake a review of the Art Data Centre site and surrounds and the existing transport provision,
- Analyse travel survey data and prepare an action plan,

The remainder this documents addressed the following;

• Purpose of a Work Place Travel Plan,

¹ Workplace Travel Plans, A Guide for Implementers, National Transport Authority

- Site Assessment Measures included in Art Data Centre Design to encourage sustainable travel modes,
- Measures to be considered as part of Work Place Travel Plan
- Commitment to Clare County Council

2 PURPOSE OF A WORK PLACE TRAVEL PLAN

The purpose of a Work Place Travel Plan is to minimise the reliance on the private car for staff travel generated by the proposed development, in particular for car trips with single occupancy. This will be done through the identification and implementation of a series of measures aimed at encouraging the use of more sustainable forms of transport. These alternative modes include cycling, walking and public transport, with more efficient use of the private car, through car-sharing and car-pooling, also to be encouraged. The benefits of the implementation of a successful travel plan are numerous, including;

- Reduced traffic on the local road network, resulting in reduced congestion and emissions,
- Fitter and healthier work force resulting in increased productivity,
- Less valuable land require for parking.

3 PROVISION FOR SUSTAINABLE TRAVEL MODES BY DESIGN

The provision of sustainable modes of travel as feasible alternatives to the private car for staff trips to and from the Art Data Centre was a central consideration throughout the design of the campus. Specific measures proposed to encourage these alternative modes of travel include the following.

Walking and cycling

As part of the Art Data Centre development it is proposed to provide a shared footpath and cycle lane on the northern side of the R352 Tulla road from the proposed Art Data Centre access junction, westwards to the Clare East Clare Roundabout. It is also proposed to upgrade the existing footpath on the southern side of the road to a shared footpath and cycle lane. An informal uncontrolled pedestrian crossing facility, comprising dropped kerbs, tactile paving and a centre island is proposed across the R352 Tulla Road just to the east of the East Clare Roundabout, in order to provide a continuous pedestrian link between the Art Data Centre and Ennis Town Centre.

Pedestrian access into the site is provided by means of a footpath adjacent to the main proposed vehicle access junction, with continuous footpaths provided within the campus to all individual buildings on the campus. Dropped kerbs and tactile paving are provided at all crossing points. Cycle lanes are provided on the main access road serving the campus.

Covered cycle parking is distributed at various locations throughout the site with a total number of 126 spaces provided. This equates to 1 cycle parking space for every 2 of the 256 employees that may be on

site at one time (due to shift patterns), which is in excess of the 1 space per 10% of employees suggested in the NTA Cycle manual.

Showers and changing facilities are included in each of the data centre buildings in order to further encourage walking and cycling.

Public transport

There are currently no local bus services in Ennis, so at present bus would not be a mode of transport available for staff or visitors to the proposed site. It is, however, noted that the provision of local bus services on key routes in Ennis is fundamental to the National Transport Authorities Smarter Travel program, which requires the availability and the promotion of sustainable alternative modes of travel to the private car, as adopted in the current Clare Development Plan 2017 to 2023. While the assessment of the viability of a local Ennis bus route on the R352 Tulla Road is outside the remit of the current development proposal, given the quantum of residential and other development on the route between the site and Ennis Town Centre, it is considered that the Tulla Road route would be an ideal location to pilot a local bus service. Given the additional numbers of staff that will be expected to travel to the Art Data Centre from Ennis, the proposed development would serve to enhance the viability of such a service. The Applicant would fully support the introduction of a local bus service on the R352 Tulla Road and would also consider the potential for the future bus route to terminate at the Art Data Centre campus. An area for a future bus turning area is included in the proposed development access junction on the R352 Tulla Road.

4 KEY ELEMENTS OF THE ARTS DATA CENTRE WORK PLACE TRAVEL PLAN

The key stages in the development of the Art Data Centre Work Place Travel Plan will include the following;

Appointment of a Travel Plan Co-Ordinator

It will be essential that the plan is given support and priority by the senior Art Data Centre management for it be successful, and it is equally important that it is developed and introduced as far as is possible on opening, prior to staff settling into the habit of driving to work. A senior member of the management staff will be allocated the roll of the travel plan co-ordinator, with responsibility for the development, implementation and monitoring of the plan.

The key steps that will be followed are set out in the document "Workplace Travel Plans, A guide for Implementers, National Transport Authority, with some of the key tasks summarised as follows.

Undertake staff surveys

This will include staff travel surveys to establish where staff live and how and why they travel in order to establish any key issues or common factors relating to those that travel by car.

Site audit

A detailed travel audit will be undertaken for the site and surrounding network. This will assess the availability and the quality of transport provision for the various modes of travel in order to identify any improvements that may be made.

Identify and Implement Actions

The next step will be to develop measures that will have an impact in terms of encouraging the use of sustainable nodes of travel based on findings of the staff surveys and site transport audit.

As stated previously, it is intended that the staff surveys, data analysis and formulation of an action plan would be done in association with the NTA as part of the **Smarter Travel Work Place Package**.

Monitoring the Travel Plan

The plan will be monitored by the designated travel plan co-ordinator, which will include periodic repeat staff travel surveys in order to establish the mode share being achieved, and to identify additional measures that may be included in the plan.

5 COMMITMENT TO CLARE COUNTY COUNCIL

The Applicant, Art Data Centre Ennis, commit to Clare County Council to develop and implement a staff travel plan in association with the NTA as part of the **Smarter Travel Work Place Package**. The Applicant also commits to monitoring and updating the Travel Plan on a regular basis.

JUNCTION MODE OUTPUTS

ALAN LIPSCOMBE TRAFFIC AND TRANSPORT

<u>Proposed Art Data Centre access junction</u> on the R352 Tulla Road Peak construction, PM peak hour, Year 2027

East Clare Roundabout on the R352 Tulla Road Peak construction, PM peak hour, Year 2027

<u>Tulla Road West Roundabout</u> on the R352 Tulla Road Peak construction, PM peak hour, Year 2027

<u>Proposed Art Data Centre access junction</u> on the R352 Tulla Road Peak construction, PM peak hour, Year 2027

	PICADY									
GUI Version: 5.1 AD Analysis Program Release: 4.0 (SEPT 2008)										
$\ensuremath{\mathbb{C}}$ Copyright TRL Limited, 2008 Adapted from PICADY/3 which is Crown Copyright by permission of the controller of HMSO										
For sales and distribution	n information, program advice an	d maintenance, contact:								
TRL Limited Crowthorne House Nine Mile Ride Wokingham, Berks. 										
The user of this computer program for the solution of an en	gineering problem is in no way relie	ved of their responsibility for the correctness of the solution								

Run Analysis

Parameter	Values
File Run	C:\\Picady - Art Data\Development access junction PM 2027 peak con.vpi
Date Run	08 July 2021
Time Run	21:24:29
Driving Side	Drive On The Left

Arm Names and Flow Scaling Factors

Arm	Arm Name	Flow Scaling Factor (%)
Arm A	R352 Ennis	100
Arm B	Development access	100
Arm C	R352 Tulla	100

Stream Labelling Convention

Stream A-B contains traffic going from A to B etc.

Run Information

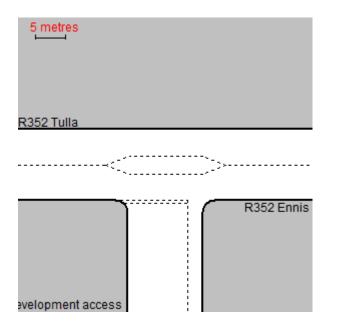
Parameter	Values
Run Title	Art Data Centre access junction R352 Tulla Road
Location	Ennis
Date	16 April 2021
Enumerator	adl [ADL-PC]
Job Number	8810
Status	ТІА
Client	Art Data Centre
Description	-

Errors and Warnings

Parameter	Values
Warning	No Errors Or Warnings

Geometric Data

Geometric Parameters


Parameter	Minor Arm B
Major Road Carriageway Width (m)	9.00
Major Road Kerbed Central Reserve Width (m)	0.00
Major Road Right Turning Lane Width (m)	3.00
Minor Road Width 0m Back from Junction (m)	10.00
Minor Road Width 5m Back from Junction (m)	7.70
Minor Road Width 10m Back from Junction (m)	4.70
Minor Road Width 15m Back from Junction (m)	3.75
Minor Road Width 20m Back from Junction (m)	3.75
Minor Road Derived Flare Length (PCU)	2.000
Minor Road Visibility To Right (m)	70
Minor Road Visibility To Left (m)	70
Major Road Right Turn Visibility (m)	100
Major Road Right Turn Blocks Traffic	No

Slope and Intercept Values

Stream	Intercept for Stream B-A	Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B	
B-A	0.000	0.000	0.000	0.000	0.000	
B-C	0.000	0.000	0.000	-	-	
C-B	686.890	0.231	0.231	-	-	

Note: Streams may be combined in which case capacity will be adjusted These values do not allow for any site-specific corrections

Junction Diagram

Demand Data

Modelling Periods

Parameter	Period	Duration (min)	Segment Length (min)	
First Modelling Period	16:45-18:15	90	15	

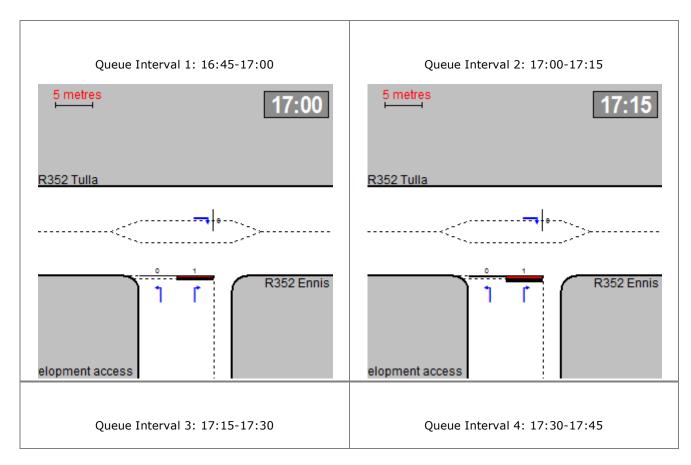
ODTAB Turning Counts

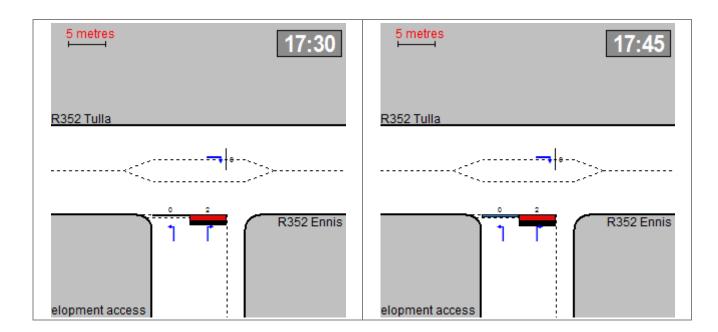
Demand Set: Art Data Centre access junction R352 Tulla Road **Modelling Period:** 16:45-18:15

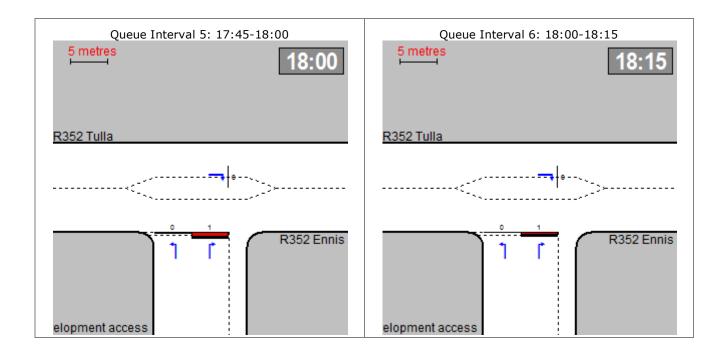
From/To	Arm A	Arm B	Arm C	
Arm A	0.0	47.0	406.0	
Arm B	248.0	0.0	95.0	
Arm C	288.0	12.0	0.0	

ODTAB Synthesised Flows

Demand Set: Art Data Centre access junction R352 Tulla Road **Modelling Period:** 16:45-18:15

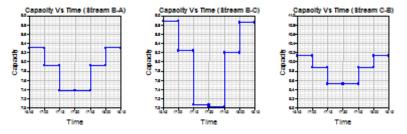

Arm	Rising Time	Rising Flow (veh/min)	Peak Time	Peak Flow (veh/min)	Falling Time	Falling Flow (veh/min)
Arm A	17:00	5.662	17:30	8.494	18:00	5.662
Arm B	17:00	4.287	17:30	6.431	18:00	4.287
Arm C	17:00	3.750	17:30	5.625	18:00	3.750

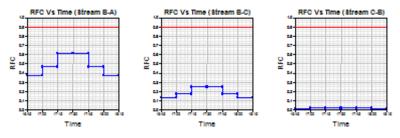

Heavy Vehicles Percentages


Demand Set: Art Data Centre access junction R352 Tulla Road **Modelling Period:** 16:45-18:15

From/To	Arm A	Arm B	Arm C
Arm A	-	0.0	0.0
Arm B	0.0	-	0.0
Arm C	0.0	0.0	-

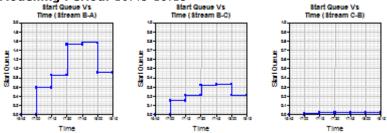
Queue Diagrams



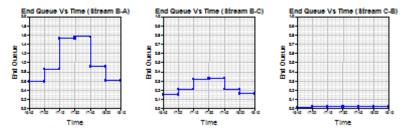


Capacity Graph

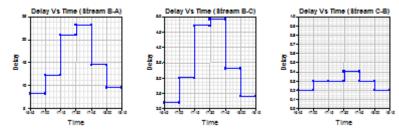
Demand Set: Sum of Demand Sets for Modelling Period: 16:45 - 18:15 **Modelling Period:** 16:45-18:15



RFC Graph


Start Queue Graph

Demand Set: Sum of Demand Sets for Modelling Period: 16:45 - 18:15 **Modelling Period:** 16:45-18:15



End Queue Graph

Demand Set: Sum of Demand Sets for Modelling Period: 16:45 - 18:15 **Modelling Period:** 16:45-18:15

Delay Graph

Queues & Delays

Segment	Stream	Demand (veh/min)	Capacity (veh/min)	RFC	Ped. Flow (ped/min)	Start Queue (veh)	End Queue (veh)	Geometric Delay (veh.min/	Delay (veh.min/	Mean Arriving Vehicle Delay
	B-A	3.11	8.30	0.375	(ped/mm)	0.00	0.59	segment)	segment) 8.3	(min) 0.19
	B-C	1.19	8.88	0.134	_	0.00	0.15	-	2.2	0.13
	C-A	3.61	-	-	-	-	-	-	-	-
16:45-17:00	C-B	0.15	10.13	0.015	-	0.00	0.01	-	0.2	0.10
	A-B	0.59	-	-	-	-	-	-	-	-
	A-C	5.09	-	-	-	-	-	-	-	-
Segment	Stream	Demand (veh/min)	Capacity (veh/min)	RFC	Ped. Flow (ped/min)	Start Queue (veh)	End Queue (veh)	Geometric Delay (veh.min/ segment)	Delay (veh.min/ segment)	Mean Arriving Vehicle Delay (min)
	B-A	3.72	7.92	0.469	-	0.59	0.86	-	12.3	0.24
	B-C	1.42	8.24	0.173	-	0.15	0.21	-	3.0	0.15
17:00-17:15	C-A	4.32	-	-	-	-	-	-	-	-
17:00-17:15	C-B	0.18	9.88	0.018	-	0.01	0.02	-	0.3	0.10
	A-B	0.70	-	-	-	-	-	-	-	-
	A-C	6.08	-	-	-	-	-	-	-	-
Segment	Stream	Demand (veh/min)	Capacity (veh/min)	RFC	Ped. Flow (ped/min)	Start Queue (veh)	End Queue (veh)	Geometric Delay (veh.min/ segment)	Delay (veh.min/ segment)	Mean Arriving Vehicle Delay (min)
	B-A	4.55	7.38	0.616	-	0.86	1.52	-	21.0	0.34
17:15-17:30	B-C	1.74	7.07	0.247	-	0.21	0.32	-	4.7	0.19
	C-A	5.28	-	-	-	-	-	-	-	-

C-B	0.22	9.52	0.023	-	0.02	0.02	-	0.3	0.11
A-B	0.86	-	-	-	-	-	-	-	-
A-C	7.45	-	-	-	-	-	-	-	-

Segme nt	Strea m	Demand(veh/ min)	Capacity(ve h/min)	RFC	Ped.Flow(ped/ min)	Start Queue(v eh)	End Queue(v eh)	Geometric Delay(veh.min/seg ment)	Delay(veh.min/seg ment)	Mean ArrivingVeh icle Delay(min)
	B-A	4.55	7.38	0.616	-	1.52	1.56	-	23.2	0.35
	B-C	1.74	7.02	0.248	-	0.32	0.33	-	4.9	0.19
17:30-	C-A	5.28	-	-	-	-	-	-	-	-
17:45	C-B	0.22	9.52	0.023	-	0.02	0.02	-	0.4	0.11
	A-B	0.86	-	-	-	-	-	-	-	-
	A-C	7.45	-	-	-	-	-	-	-	-

Segme nt	Strea m	Demand(veh/ min)	Capacity(ve h/min)	RFC	Ped.Flow(ped/ min)	Start Queue(v eh)	End Queue(v eh)	Geometric Delay(veh.min/seg ment)	Delay(veh.min/seg ment)	Mean ArrivingVeh icle Delay(min)
	B-A	3.72	7.92	0.469	-	1.56	0.91	-	14.5	0.24
	B-C	1.42	8.20	0.174	-	0.33	0.21	-	3.3	0.15
17:45-	C-A	4.32	-	-	-	-	-	-	-	-
18:00	C-B	0.18	9.88	0.018	-	0.02	0.02	-	0.3	0.10
	A-B	0.70	-	-	-	-	-	-	-	-
	A-C	6.08	-	-	-	-	-	-	-	-

Segme nt	Strea m	Demand(veh/ min)	Capacity(ve h/min)	RFC	Ped.Flow(ped/ min)	Start Queue(v eh)	End Queue(v eh)	Geometric Delay(veh.min/seg ment)	Delay(veh.min/seg ment)	Mean ArrivingVeh icle Delay(min)
	B-A	3.11	8.30	0.375	-	0.91	0.61	-	9.6	0.19
	B-C	1.19	8.85	0.135	-	0.21	0.16	-	2.4	0.13
18:00-	C-A	3.61	-	-	-	-	-	-	-	-
18:15	C-B	0.15	10.13	0.015	-	0.02	0.02	-	0.2	0.10
	A-B	0.59	-	-	-	-	-	-	-	-
	A-C	5.09	-	-	-	-	-	-	_	-

Entry capacities marked with an '(X)' are dominated by a pedestrian crossing in that time segment.

In time segments marked with a '(B)', traffic leaving the junction may block back from a crossing so impairing normal operation of the junction. Delays marked with '##' could not be calculated.

Overall Queues & Delays

Queueing Delay Information Over Whole Period

Stream	Total Demand (veh)	Total Demand (veh/h)	Queueing Delay (min)	Queueing Delay (min/veh)	Inclusive Delay (min)	Inclusive Delay (min/veh)
B-A	341.4	227.6	88.8	0.3	88.8	0.3
B-C	130.8	87.2	20.5	0.2	20.5	0.2
C-A	396.4	264.3	-	-	-	-
C-B	16.5	11.0	1.7	0.1	1.7	0.1
A-B	64.7	43.1	-	-	-	-
A-C	558.8	372.6	-	-	-	-

AII	1508.6	1005.7	111.0	0.1	111.0	0.1
-----	--------	--------	-------	-----	-------	-----

Delay is that occurring only within the time period. Inclusive delay includes delay suffered by vehicles which are still queuing after the end of the time period. These will only be significantly different if there is a large queue remaining at the end of the time period.

PICADY 5 Run Successful

East Clare Roundabout on the R352 Tulla Road Peak construction, PM peak hour, Year 2027

ARCADY 6						
GUI Version: 6.00 AF Interim Analysis Program: Release 4.0 (FEBRUARY 2006) (c) Copyright TRL Limited, 2004 Adapted from ARCADY/3 which is Crown Copyright by permission of the controller of HMSO						
For sales and distribution	information, program advice and maintenance, contact:					
TRL Limited Crowthorne House Nine Mile Ride Wokingham, Berks. RG40 3GA, UK	Tel: +44 (0)1344 770758 Fax:+44 (0)1344 770864 Email: softwarebureau@ trl.co.uk Web:www.trlsoftware.co.uk					
The user of this computer program for the solution of an eng	gineering problem is in no way relieved of their responsibility for the correctness of the solution					

Run Information

Run with file:- C:\AL Traffic jobs\Arcady - Ennis Data Centre\East Clare PM 2027 with peak cons.vai At: 21:12:04 on Thursday, July 08, 2021 Mode: Drive On The Left Units: Metric

Arm Labelling

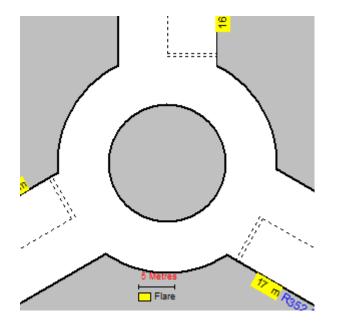
Arm	Full Arm Names
Arm A	R352 Ennis
Arm B	SB slip from M18
Arm C	R352 Tulla

Flow Scaling Factor

Arm	Flow Scaling Factor (%)
Arm A	100
Arm B	100
Arm C	100

File Properties

Run Title	Clare East Roundabout
Location	Ennis
Date	07/07/2021
Client	Art Data Centres
Enumerator	adl [ADL-PC]
Job Number	8810
Status	TIA
Description	


Errors and Warnings

[No errors or warnings]

Geometric Data

Data Item	Arm A	Arm B	Arm C	
Approach Road Half-Width (m)	4.00	4.00	4.00	
Entry Width (m)	6.70	6.40	6.70	
Flare Length (m)	17.00	16.00	16.00	
Entry Radius (m)	20.00	20.00	20.00	
Inscribed Circle Diameter (m)	30.00	30.00	30.00	
Entry Angle (degrees)	19.00	21.00	20.00	
Slope	0.695	0.679	0.690	
Intercept (PCU/Min)	30.356	29.276	30.062	

Junction Diagram: (View Extent = 40m)

Angles Between Arms (Degrees): Arm A(120) Arm B(120) Arm C(120)

Demand Data

Demand Profiles are Synthesised using **ODTAB** Data Period of interest (for Queue and Delay calculations): **16:45 to 18:15** Length of Time Period: **90 min** Length of Time Segment: **15 min**

Total Traffic Demand (Vehicles/Hour) for Demand Set: M18 Junction 13 east roundabout

From/To	Arm A	Arm B	Arm C	
Arm A	0.0	145.0	416.0	
Arm B	93.0	5.0	36.0	
Arm C	439.0	97.0	0.0	

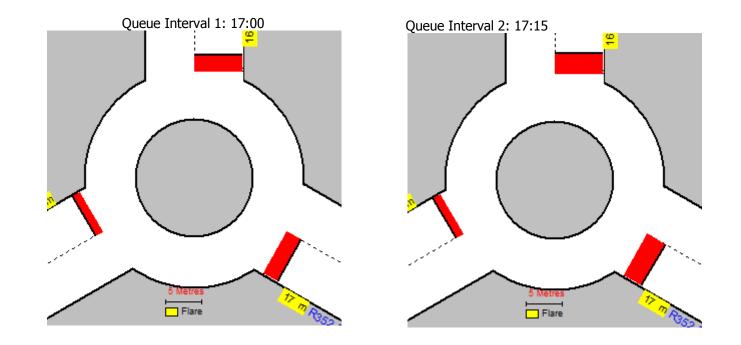
	Number	of Minutes From Sta	art When	Rate of flow (Veh/Min)			
Arms	Flow Starts To Rise	Top of Peak is Reached	Flow Stops Falling	Before Peak	At Top of Peak	After Peak	
Arm A	15.00	45.00	75.00	7.01	10.52	7.01	
Arm B	15.00	45.00	75.00	1.67	2.51	1.67	
Arm C	15.00	45.00	75.00	6.70	10.05	6.70	

Turning Proportions

ODTAB Demand Data type is used, no turning proportions available.

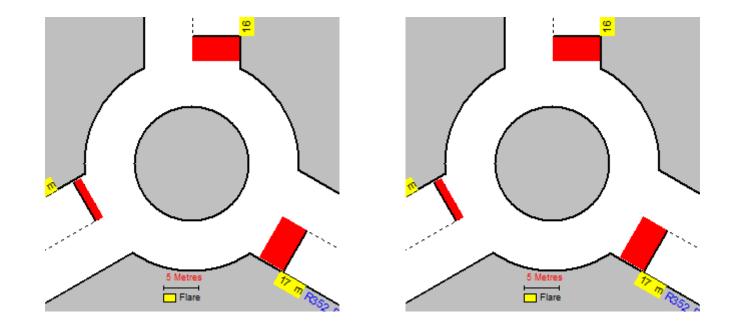
Heavy Vehicle Percentages for Demand Set: M18 Junction 13 east roundabout

Vehicle percentages constant over time and entry

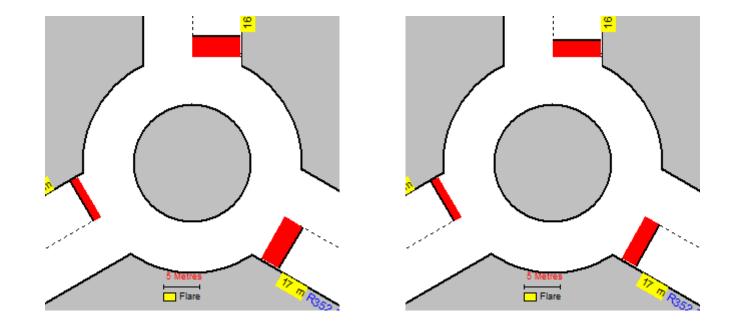

Time Period From/To		Arm A	Arm B	Arm C
	Arm A	(3.0)	(3.0)	(3.0)
16:45 to 18:15	Arm B	(3.0)	(3.0)	(3.0)
	Arm C	(3.0)	(3.0)	(3.0)

Queue Diagrams: (View Extent = 40m)

Queue Length	Colour
Mean Queue	
5 th % ile	
90 th % ile	

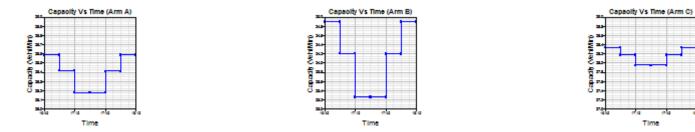

95 th % ile

Start Time: 16:45---> End Time: 18:15

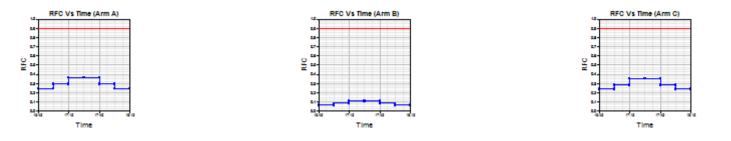

Queue Interval 3: 17:30

Queue Interval 4: 17:45

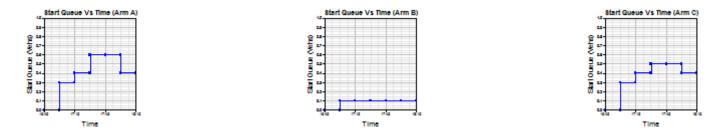
Queue Interval 5: 18:00


Queue Interval 6: 18:15

Demand Data Graphs

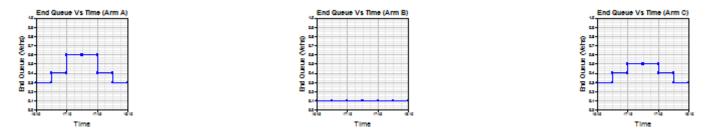

No graph available

Capacity (against Time) Graphs, for each 15min Interval (16:45 - 18:15)



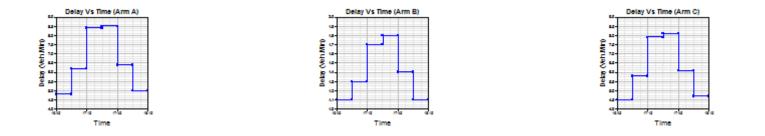
RFC (against Time) Graphs, for each 15min Interval (16:45 - 18:15)

(QUEUEING DELAY INFORMATION OVER WHOLE PERIOD)



Start Queue (against Time) Graphs, for each 15min Interval (16:45 - 18:15)

End Queue (against Time) Graphs, for each 15min Interval (16:45 - 18:15)


(QUEUEING DELAY INFORMATION OVER WHOLE PERIOD)

Geometric Delay Graph

No Data. Please select 'Geometric Delay' in 'Principal Options' and try again.

Delay (against Time) Graphs, for each 15min Interval (16:45 - 18:15)

Queues and Delay:

Segment	Arm	Demand (Veh / Min)	Capacity (Veh / Min)	Demand / Capacity (RFC)	Ped Flow (Ped / Min)	Start Queue (Veh)	End Queue (Veh)	Delay (Veh.Min / Time Segment)	Geometric Delay (Veh.Min / Time Segment)	Arrival Delay (Min / Veh)
	А	7.01	28.59	0.245	-	0.0	0.3	4.8	-	0.05
Segment : 1 - 16:45 to 17:00	В	1.67	24.90	0.067	-	0.0	0.1	1.1	-	0.04
10.45 10 17.00	С	6.70	28.34	0.236	-	0.0	0.3	4.5	-	0.05
	А	8.37	28.42	0.295	-	0.3	0.4	6.2	-	0.05
Segment : 2 - 17:00 to 17:15	В	2.00	24.21	0.083	-	0.1	0.1	1.3	-	0.05
11.00 10 11.10	С	8.00	28.18	0.284	-	0.3	0.4	5.8	-	0.05
	А	10.26	28.18	0.364	-	0.4	0.6	8.4	-	0.06
Segment : 3 - 17:15 to 17:30	В	2.45	23.26	0.105	-	0.1	0.1	1.7	-	0.05
17.15 to 17.50	С	9.80	27.95	0.351	-	0.4	0.5	7.9	-	0.06
	А	10.26	28.18	0.364	-	0.6	0.6	8.5	-	0.06
Segment : 4 - 17:30 to 17:45	В	2.45	23.26	0.105	-	0.1	0.1	1.8	-	0.05
11.00 10 11.40	С	9.80	27.95	0.351	-	0.5	0.5	8.1	-	0.06
	А	8.37	28.41	0.295	-	0.6	0.4	6.4	-	0.05
Segment : 5 - 17:45 to 18:00	В	2.00	24.20	0.083	-	0.1	0.1	1.4	-	0.05
17.45 10 10.00	С	8.00	28.18	0.284	-	0.5	0.4	6.1	-	0.05
	А	7.01	28.59	0.245	-	0.4	0.3	5.0	-	0.05
Segment : 6 - 18:00 to 18:15	В	1.67	24.89	0.067	-	0.1	0.1	1.1	-	0.04
10.00 10 10.15	С	6.70	28.34	0.236	-	0.4	0.3	4.7	-	0.05

Arm	Total D	emand	Queueir	ng Delay	Inclusive Queueing Delay		
	(Veh)	(Veh/Hr)	(Min)	(Min/Veh)	(Min)	(Min/Veh)	
Α	769.2	512.8	39.2	0.05	39.2	0.05	
В	183.7	122.5	8.4	0.05	8.4	0.05	
С	735.0	490.0	37.2	0.05	37.2	0.05	
ALL	1688.0	1125.3	84.7	0.05	84.7	0.05	

Queuing Delay Information Over Whole Period

Delay is that occuring only within the time period.

Inclusive delay includes delay suffered by vehicles that are still queueing after the end of the time period. These will only be significantly different if there is a large queue remaining at the end of the time period.

Accident Data

No Data, please select the 'Accident Analysis' option in 'Principal Options' and try again.

Accident Results

No Data, please select the 'Accident Analysis' option in 'Principal Options' and try again.

<u>Tulla Road West Roundabout</u> on the R352 Tulla Road Peak construction, PM peak hour, Year 2027

ARCADY 6					
GUI Version: 6.00 AF Interim Analysis Program: Release 4.0 (FEBRUARY 2006) (c) Copyright TRL Limited, 2004 Adapted from ARCADY/3 which is Crown Copyright by permission of the controller of HMSO					
For sales and distribution	information, program advice and maintenance, contact:				
TRL Limited Crowthorne House Nine Mile Ride Wokingham, Berks. RG40 3GA, UK	Tel: +44 (0)1344 770758 Fax:+44 (0)1344 770864 Email: softwarebureau@ trl.co.uk Web:www.trlsoftware.co.uk				
The user of this computer program for the solution of an eng	ineering problem is in no way relieved of their responsibility for the correctness of the solution				

Run Information

Run with file:- C:\AL Traffic jobs\Arcady - Ennis Data Centre\Tulla West PM 2027 peak con.vai At: 21:16:12 on Thursday, July 08, 2021 Mode: Drive On The Left Units: Metric

Arm Labelling

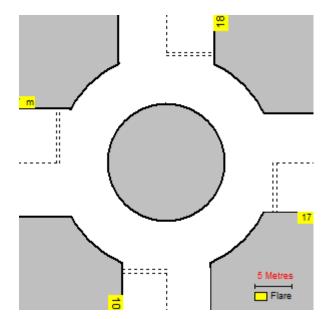
Arm	Full Arm Names
Arm A	R352 Ennis
Arm B	Local access
Arm C	R352 Tulla
Arm D	M18 slip

Flow Scaling Factor

Arm	Flow Scaling Factor (%)
Arm A	100
Arm B	100
Arm C	100
Arm D	100

File Properties

Run Title	Tulla Road West Roundabout
Location	Ennis
Date	16/04/2021
Client	Art Data Centre
Enumerator	adl [ADL-PC]
Job Number	8810
Status	TIA
Description	


Errors and Warnings

[No errors or warnings]

Geometric Data

Data Item	Arm A	Arm B	Arm C	Arm D
Approach Road Half-Width (m)	4.00	3.50	4.00	3.60
Entry Width (m)	6.70	6.00	7.30	6.50
Flare Length (m)	17.00	10.00	27.00	18.00
Entry Radius (m)	20.00	10.00	20.00	10.00
Inscribed Circle Diameter (m)	30.00	30.00	30.00	30.00
Entry Angle (degrees)	40.00	29.00	44.00	29.00
Slope	0.646	0.585	0.671	0.622
Intercept (PCU/Min)	28.226	23.567	30.616	26.578

Junction Diagram: (View Extent = 40m)

Angles Between Arms (Degrees): Arm A(90) Arm B(90) Arm C(90) Arm D(90)

Demand Data

Demand Profiles are Synthesised using **ODTAB** Data Period of interest (for Queue and Delay calculations): **16:45 to 18:15** Length of Time Period: **90 min** Length of Time Segment: **15 min**

Total Traffic Demand (Vehicles/Hour) for Demand Set: M18 Junction 12 east roundabout

From/To	Arm A	Arm B	m B Arm C Ar	
Arm A	0.0	2.0	464.0	131.0

Arm B	6.0	0.0	0.0	0.0	
Arm C	456.0	2.0	0.0	75.0	
Arm D	375.0	2.0	95.0	0.0	

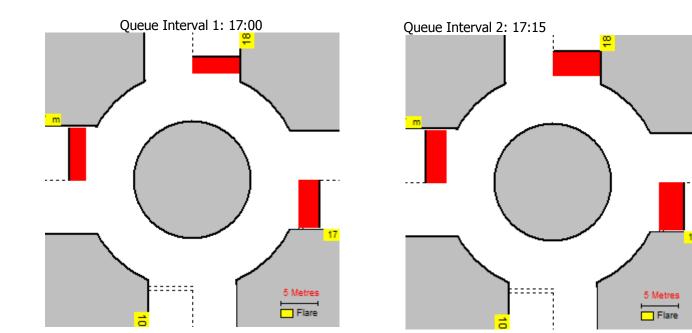
Entry Flow Data for Demand Set: M18 Junction 12 east roundabout

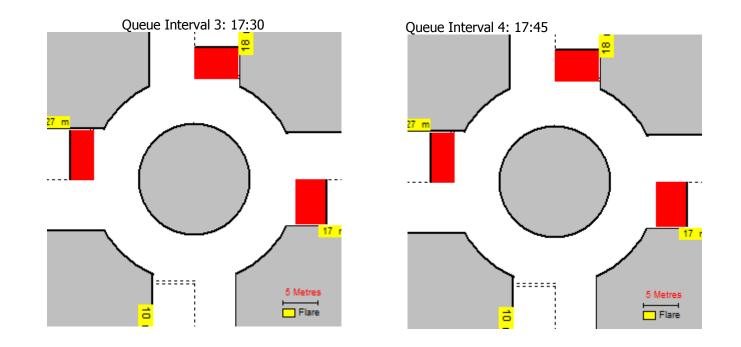
	Number	of Minutes From Sta	art When	Rate of flow (Veh/Min)			
Arms	Flow Starts To Rise	Top of Peak is Reached	Flow Stops Falling	Before Peak	At Top of Peak	After Peak	
Arm A	15.00	45.00	75.00	7.46	11.19	7.46	
Arm B	15.00	45.00	75.00	0.08	0.11	0.08	
Arm C	15.00	45.00	75.00	6.66	9.99	6.66	
Arm D	15.00	45.00	75.00	5.90	8.85	5.90	

Turning Proportions

ODTAB Demand Data type is used, no turning proportions available.

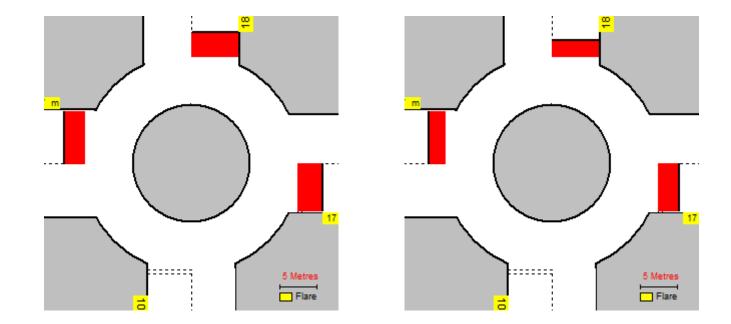
Heavy Vehicle Percentages for Demand Set: M18 Junction 12 east roundabout


Vehicle percentages constant over time and entry

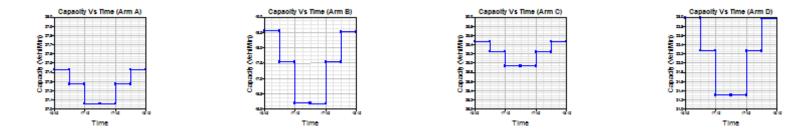

Time Period	From/To	Arm A	Arm B	Arm C	Arm D	
16:45 to 18:15	Arm A	(0.0)	(0.0)	(0.0)	(0.0)	
	Arm B	(0.0)	(0.0)	(0.0)	(0.0)	
	Arm C	(0.0)	(0.0)	(0.0)	(0.0)	
	Arm D	(0.0)	(0.0)	(0.0)	(0.0)	

Queue Diagrams: (View Extent = 40m)

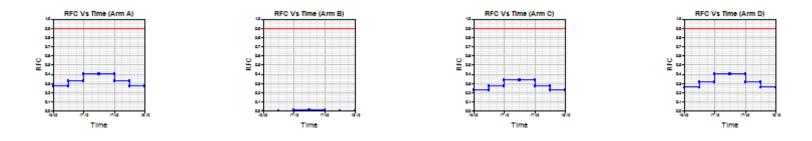
Queue Length	Colour
Mean Queue	
5 th % ile	
90 th % ile	
95 th % ile	


Start Time: 16:45---> End Time: 18:15

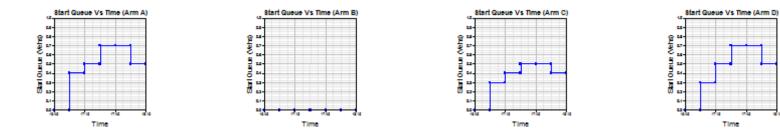
Queue Interval 5: 18:00


Queue Interval 6: 18:15

Demand Data Graphs

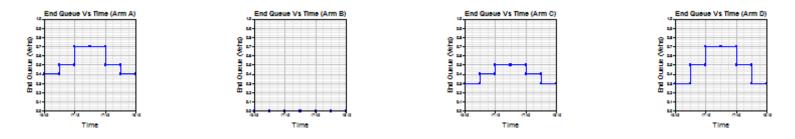

No graph available

Capacity (against Time) Graphs, for each 15min Interval (16:45 - 18:15)



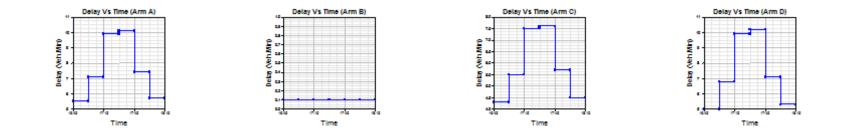
RFC (against Time) Graphs, for each 15min Interval (16:45 - 18:15)

(QUEUEING DELAY INFORMATION OVER WHOLE PERIOD)



Start Queue (against Time) Graphs, for each 15min Interval (16:45 - 18:15)

End Queue (against Time) Graphs, for each 15min Interval (16:45 - 18:15)


(QUEUEING DELAY INFORMATION OVER WHOLE PERIOD)

Geometric Delay Graph

No Data. Please select 'Geometric Delay' in 'Principal Options' and try again.

Delay (against Time) Graphs, for each 15min Interval (16:45 - 18:15)

Queues and Delay:

Segment	Arm	Demand (Veh / Min)	Capacity (Veh / Min)	Demand / Capacity (RFC)	Ped Flow (Ped / Min)	Start Queue (Veh)	End Queue (Veh)	Delay (Veh.Min / Time Segment)	Geometric Delay (Veh.Min / Time Segment)	Arrival Delay (Min / Veh)
	А	7.46	27.43	0.272	-	0.0	0.4	5.5	-	0.05
Segment : 1 -	В	0.08	18.54	0.004	-	0.0	0.0	0.1	-	0.05
16:45 to 17:00	С	6.66	29.47	0.226	-	0.0	0.3	4.3	-	0.04
	D	5.90	22.98	0.257	-	0.0	0.3	5.0	-	0.06
	А	8.91	27.27	0.327	-	0.4	0.5	7.1	-	0.05
Segment : 2 -	В	0.09	17.54	0.005	-	0.0	0.0	0.1	-	0.06
17:00 to 17:15	С	7.96	29.25	0.272	-	0.3	0.4	5.5	-	0.05
	D	7.05	22.27	0.316	-	0.3	0.5	6.8	-	0.07
	А	10.91	27.06	0.403	-	0.5	0.7	9.9	-	0.06
Segment : 3 -	В	0.11	16.19	0.007	-	0.0	0.0	0.1	-	0.06
17:15 to 17:30	С	9.74	28.94	0.337	-	0.4	0.5	7.5	-	0.05
	D	8.63	21.30	0.405	-	0.5	0.7	9.9	-	0.08
	А	10.91	27.06	0.403	-	0.7	0.7	10.1	-	0.06
Segment : 4 -	В	0.11	16.18	0.007	-	0.0	0.0	0.1	-	0.06
17:30 to 17:45	С	9.74	28.94	0.337	-	0.5	0.5	7.6	-	0.05
	D	8.63	21.30	0.405	-	0.7	0.7	10.2	-	0.08
Segment : 5 -	А	8.91	27.27	0.327	-	0.7	0.5	7.4	-	0.05
17:45 to 18:00	В	0.09	17.53	0.005	-	0.0	0.0	0.1	-	0.06

	С	7.96	29.24	0.272	-	0.5	0.4	5.7	-	0.05
	D	7.05	22.26	0.316	-	0.7	0.5	7.1	-	0.07
	А	7.46	27.43	0.272	-	0.5	0.4	5.7	-	0.05
Segment : 6 -	В	0.08	18.51	0.004	-	0.0	0.0	0.1	-	0.05
18:00 to 18:15	С	6.66	29.47	0.226	-	0.4	0.3	4.5	-	0.04
	D	5.90	22.97	0.257	-	0.5	0.3	5.3	-	0.06

Queuing Delay Information Over Whole Period

Arm	Total D	emand	Queueir	ng Delay	Inclusive Queueing Delay		
Arm	(Veh)	(Veh/Hr)	(Min)	(Min/Veh)	(Min)	(Min/Veh)	
Α	818.6	545.7	45.7	0.06	45.7	0.06	
В	8.2	5.5	0.5	0.06	0.5	0.06	
С	730.9	487.2	35.0	0.05	35.0	0.05	
D	647.2	431.5	44.3	0.07	44.3	0.07	
ALL	2204.9	1469.9	125.5	0.06	125.5	0.06	

Delay is that occuring only within the time period. Inclusive delay includes delay suffered by vehicles that are still queueing after the end of the time period. These will only be significantly different if there is a large queue remaining at the end of the time period.

Accident Data

No Data, please select the 'Accident Analysis' option in 'Principal Options' and try again.

Accident Results

No Data, please select the 'Accident Analysis' option in 'Principal Options' and try again.

The Tecpro Building, Clonshaugh Business & Technology Park, Dublin 17, Ireland.

T: + 353 1 847 4220 F: + 353 1 847 4257 E: info@awnconsulting.com W: www.awnconsulting.com

CONSTRUCTION & DEMOLITION WASTE MANAGEMENT PLAN FOR A PROPOSED DEVELOPMENT

"ART DATACENTRES ENNIS CAMPUS"

Appendix 14.1

Report Prepared For

ART Datacentre Development Ltd.

Report Prepared By

Chonaill Bradley, Senior Environmental Consultant

Our Reference

CB/21/12145WMR01

Date of Issue

07 July 2021

Cork Office

Unit 5, ATS Building, Carrigaline Industrial Estate, Carrigaline, Co. Cork. T: + 353 21 438 7400 F: + 353 21 483 4606

AWN Consulting Limited Registered in Ireland No. 319812 Directors: F Callaghan, C Dilworth, T Donnelly, T Hayes, D Kelly, E Porter

Document History

Document Reference		Original Issue Date	Original Issue Date			
CB/21/12145WMR01		07 July 2021				
Revision Level	Revision Level Revision Date		Sections Affected			

Record of Approval

Details	Written by	Approved by
Signature	tad	Ja Cell
Name	Chonaill Bradley	Fergal Callaghan
Title	Senior Environmental Consultant	Director
Date	07 July 2021	07 July 2021

Contents

Page

1.0		INTRODUCTION
2.0		CONSTRUCTION & DEMOLITION WASTE MANAGEMENT IN IRELAND 3
	2.1	National Level
	2.2	Regional Level 5
	2.3	Legislative Requirements5
3.0		DESCRIPTION OF THE DEVELOPMENT
	3.1	Location, Size and Scale of the Development
	3.2	Details of the Non-Hazardous Wastes to be Produced6
	3.3	Potential Hazardous Wastes Arising7
	3.4	Main Construction and Demolition Waste Categories9
4.0		WASTE MANAGEMENT
	4.1	Demolition Waste Generation9
	4.2	Construction Waste Generation10
	4.3	Proposed Waste Management Options11
	4.4	Tracking and Documentation Procedures for Off-Site Waste14
5.0		ESTIMATED COST OF WASTE MANAGEMENT15
	5.1	Reuse15
	5.2	Recycling15
	5.3	Disposal15
6.0		DEMOLITION PROCEDURES15
7.0		TRAINING PROVISIONS16
	7.1	Waste Manager Training and Responsibilities16
	7.2	Site Crew Training16
8.0		RECORD KEEPING17
9.0		OUTLINE WASTE AUDIT PROCEDURE
	9.1	Responsibility for Waste Audit18
	9.2	Review of Records and Identification of Corrective Actions
10.0	C	CONSULTATION WITH RELEVANT BODIES
	10.1	Local Authority18
	10.2	2 Recycling / Salvage Companies18
11.0	C	REFERENCES

1.0 INTRODUCTION

AWN Consulting Ltd. (AWN) has prepared this Construction & Demolition Waste Management Plan (C&D WMP) on behalf of ART Datacentre Development Ltd. The proposed development includes six data storage facilities, an energy centre an Above Ground Installation (AGI) building, vertical farm, a substation compound and associated ancillary development on a greenfield site (previously used for agriculture and hosting power transmission infrastructure) in the townlands of Tooreen and Cahernalough, Co Clare.

This plan will provide information necessary to ensure that the management of C&D waste at the site is undertaken in accordance with the current legal and industry standards including the *Waste Management Acts* 1996 - 2011 and associated Regulations ¹, *Protection of the Environment Act* 2003 as amended ², *Litter Pollution Act* 1997 as amended ³ and the *Southern Region (SR) Waste Management Plan* 2015 – 2021 ⁴. In particular, this Plan aims to ensure maximum recycling, reuse and recovery of waste with diversion from landfill, wherever possible. It also seeks to provide guidance on the appropriate collection and transport of waste from the site to prevent issues associated with litter or more serious environmental pollution (e.g. contamination of soil and/or water).

This C&D WMP includes information on the legal and policy framework for C&D waste management in Ireland, estimates of the type and quantity of waste to be generated by the proposed development and makes recommendations for management of different waste streams.

2.0 CONSTRUCTION & DEMOLITION WASTE MANAGEMENT IN IRELAND

2.1 National Level

The Irish Government issued a policy statement in September 1998, *Changing Our Ways*⁵, which identified objectives for the prevention, minimisation, reuse, recycling, recovery and disposal of waste in Ireland. The target for C&D waste in this report was to recycle at least 50% of C&D waste within a five year period (by 2003), with a progressive increase to at least 85% over fifteen years (i.e. 2013).

In response to the *Changing Our Ways* report, a task force (Task Force B4) representing the waste sector of the already established Forum for the Construction Industry, released a report entitled '*Recycling of Construction and Demolition Waste*' ⁶ concerning the development and implementation of a voluntary construction industry programme to meet the Government's objectives for the recovery of C&D waste.

In September 2020 the government released a new national policy document outlining a new action plan for Ireland and its waste to cover the period of 2020-2025. This plan, 'A Waste Action Plan for a Circular Economy'⁷, was prepared in response to the 'European Green Deal' which sets a roadmap for a transition to a new economy, where climate and environmental challenges are turned into opportunities, replacing the previous national waste management plan 'A Resource Opportunity (2012)'

It aims to fulfil the commitment in the Programme for Government to publish and start implementing a new National Waste Action Plan. It is intended that this new national waste

policy will inform and give direction to waste planning and management in Ireland over the coming years. It will be followed later this year by an All of Government Circular Economy Strategy. The policy document shifts focus away from waste disposal and moves it back up the production chain. To support the policy, regulation is already in place (Circular Economy Legislative Package) or in the pipeline (Single Use Plastics Directive). The policy document contains over 200 measures across various waste areas including circular economy, municipal waste, consumer protection and citizen engagement, plastics and packaging, construction and demolition, textiles, green public procurement and waste enforcement.

One of the first actions to be taken is the development of a high-level, whole of Government Circular Economy Strategy to set a course for Ireland to transition across all sectors and at all levels of Government toward circularity. This stratergy was issued for public consultation in April 2021.

The National Construction and Demolition Waste Council (NCDWC) was launched in June 2002, as one of the recommendations of the Forum for the Construction Industry, in the Task Force B4 final report. The NCDWC subsequently produced '*Best Practice Guidelines for the Preparation of Waste Management Plans for Construction and Demolition Projects*'⁸ in July 2006 in conjunction with the then Department of the Environment, Heritage and Local Government (DoEHLG). The guidelines outline the issues that need to be addressed at the pre-planning stage of a development all the way through to its completion. These guidelines have been followed in the preparation of this document and include the following elements:

- Predicted C&D wastes and procedures to prevent, minimise, recycle and reuse wastes;
- Waste disposal/recycling of C&D wastes at the site;
- Provision of training for waste manager and site crew;
- Details of proposed record keeping system;
- Details of waste audit procedures and plan; and
- Details of consultation with relevant bodies i.e. waste recycling companies, Clare County Council, etc.

Section 3 of the Guidelines identifies thresholds above which there is a requirement for the preparation of a C&D Waste Management Plan for developments. This development requires a C&D WMP under the following criterion:

• New developments including institutional, educational, health and other public facilities, with an aggregate floor area in excess of 1,250m².

Other guidelines followed in the preparation of this report include 'Construction and Demolition Waste Management – a handbook for Contractors and Site Managers' ⁹, published by FÁS and the Construction Industry Federation in 2002 and the Environmental Protection Agency (EPA) 'Best Practice Guidelines for the Preparation of Resource Management Plans for Construction & Demolition Projects' Draft for public consultation ¹⁰ (April 2021).

These guidance documents are considered to define best practice for C&D projects in Ireland and describe how C&D projects are to be undertaken such that environmental impacts and risks are minimised and maximum levels of waste recycling are achieved.

2.2 Regional Level

The proposed development is located in the Local Authority area of Clare County Council (CCC). The *Southern Region Waste Management Plan 2015 – 2021* is the regional waste management plan for the CCC area published in May 2015.

The Regional Plan sets out the strategic targets for waste management in the region but does not set a specific target for C&D waste. However, the *Waste Framework Directive* sets Member States a target of *"70% preparing for reuse, recycling and other recovery of construction and demolition waste"* (excluding natural soils and stones and hazardous wastes) to be achieved by 2020.

The *Clare County Development Plan 2017 – 2023 (As Varied)*¹¹ sets out a number of policies for Clare County in line with the objectives of the regional waste management plan. The plan identifies the implementation of the joint waste management plan for the south region as the main objective of the County Council. Other waste management objectives with a particular relevance to the proposed development are:

Objectives:

- CDP 8.28: a) To implement the provisions of the Southern Region Waste Management Plan 2015 2021;
 - b) To support the development of higher-value waste pre-treatment processes and indigenous recovery practices
- CDP 8.31: a) To require a C&D Waste Management Plan to be prepared by the developer having regard to the DoEHLG's publication 'Best Practice Guidelines on the Preparation of Waste Management Plans for Construction and Demolition Projects' for new construction or demolition projects and to require that the maximum amount of waste material generated on site is reused and recycled.

2.3 Legislative Requirements

The primary legislative instruments that govern waste management in Ireland and applicable to the development are:

- Waste Management Act 1996 (No. 10 of 1996) as amended.
- Environmental Protection Act 1992 (No. 7 of 1992) as amended.
- Litter Pollution Act 1997 (No. 12 of 1997) as amended.
- Planning and Development Act 2000 (No. 30 of 2000) as amended ¹².

One of the guiding principles of European waste legislation, which has in turn been incorporated into the *Waste Management Act 1996 - 2001* and subsequent Irish legislation, is the principle of *"Duty of Care"*. This implies that the waste producer is responsible for waste from the time it is generated through until its legal recycling, recovery or disposal (including its method of disposal). As it is not practical in most cases for the waste producer to physically transfer all waste from where it is produced to the final destination, waste contractors will be employed to physically transport waste to the final destination. Following on from this is the concept of *"Polluter Pays"* whereby the waste producer is liable to be prosecuted for pollution incidents, which may arise from the

incorrect management of waste produced, including the actions of any contractors engaged (e.g. for transportation and disposal/recovery/recycling of waste).

It is therefore imperative that the Developer ensures that the waste contractors engaged by demolition and construction contractors are legally compliant with respect to waste transportation, recycling, recovery and disposal. This includes the requirement that a contractor handle, transport and recycle/recover/dispose of waste in a manner that ensures that no adverse environmental impacts occur as a result of any of these activities.

A collection permit to transport waste must be held by each waste contractor which is issued by the National Waste Collection Permit Office (NWCPO). Waste receiving facilities must also be appropriately permitted or licensed. Operators of such facilities cannot receive any waste, unless in possession of a Certificate of Registration (COR) or waste permit granted by the relevant Local Authority under the *Waste Management (Facility Permit & Registration) Regulations 2007 and Amendments* or a Waste or Industrial Emissions Licence granted by the EPA. The COR / permit / licence held will specify the type and quantity of waste able to be received, stored, sorted, recycled, recovered and/or disposed of at the specified site.

3.0 DESCRIPTION OF THE DEVELOPMENT

3.1 Location, Size and Scale of the Development

The proposed development will generally comprise:

Demolition of some of the existing buildings and hard standing areas onsite.

Construction of a mixed-use development featuring:

- 1) 6 data centres buildings,
- 2) A gas powered energy centre and Above Ground Installation (AGI),
- 3) A new 110kV substation, two drop down masts and underground grid connection.
- 4) Fibre connection,
- 5) Connection and upgrade of foul sewer and mains supply extending along the existing R352.
- 6) Undergrounding of two of the existing overhead 110kv circuits
- 7) Associated Infrastructure; roads, attenuation pond etc.

Figure 2.1 presents the site layout for the proposed masterplan. The proposed development occupies c. 48 of the total development site; the site layout reserves c. 10 ha of lands as ecological buffer zones. The indicated buffer zones on Figure 2.1 were delineated by Clare County Council (CCC) to protect ecology are protected during construction and operation of the proposed development.

Two of the 110kV overhead circuits which currently traverse the site will be brought underground to the Ennis substation as they come onto the site on the east side.

3.2 Details of the Non-Hazardous Wastes to be Produced

There will be waste materials generated from the demolition of the existing residential building, multiple farm buildings and some hardstanding areas on site, as well as from the

further excavation of the building foundations. The volume of waste generated from demolition will be more difficult to segregate than waste generated from the construction phase, as many of the building materials will be bonded together or integrated i.e. plasterboard on timber ceiling joists, steel embedded in concrete, etc.

There will also be topsoil, subsoil, stones, clay and rock excavated to facilitate construction of new foundations, underground services, and the installation of the proposed basements. The development engineers (Clifton Scannell Emerson Associates Consulting Engineers) have estimated that c. 111,424 m³ of material will need to be excavated to do so. It is currently envisaged that all of the excavated material will be able to be retained and reused onsite for landscaping and fill. If any material is found to be unsuitable for reuse it will be taken for appropriate offsite reuse, recovery, recycling and / or disposal.

During the construction phase there may be a surplus of building materials, such as timber off-cuts, broken concrete blocks, cladding, plastics, metals and tiles generated. There may also be excess concrete during construction which will need to be disposed of. Plastic and cardboard waste from packaging and supply of materials will also be generated. The contractor will be required to ensure that oversupply of materials is kept to a minimum and opportunities for reuse of suitable materials is maximised.

Waste will also be generated from construction workers e.g. organic / food waste, dry mixed recyclables (waste paper, newspaper, plastic bottles, packaging, aluminium cans, tins and Tetra Pak cartons), mixed non-recyclables and potentially sewage sludge from temporary welfare facilities provided on site during the construction phase. Waste printer / toner cartridges, waste electrical and electronic equipment (WEEE) and waste batteries may also be generated infrequently from site offices.

3.3 Potential Hazardous Wastes Arising

3.3.1 Contaminated Soil

Site investigations were carried out by Ground Investigations Ireland (GII) during April-May 2021.

Two (2) no. samples were analysed and compared against Waste Acceptance Criteria (WAC) set out by the adopted EU Council Decision 2003/33/EC which established criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 and Annex II of Directive 1999/31/EC (2002). There was no fill material noted during trial pit excavations with all samples being recorded as original clay subsoil.

The WAC analysis identifies that the representative samples are suitable for classification as Category A – Inert. Based on the laboratory results and parametric concentrations obtained from the site investigation, material from the sample locations would be acceptable at inert waste facilities (Category A).

If any potentially contaminated material is encountered, it will need to be segregated from clean / inert material, tested and classified as either non-hazardous or hazardous in accordance with the EPA publication entitled 'Waste Classification: List of Waste & Determining if Waste is Hazardous or Non-Hazardous' ¹³ using the HazWasteOnline application (or similar approved classification method). The material will then need to be classified as clean, inert, non-hazardous or hazardous in accordance with the EC Council Decision 2003/33/EC ¹⁴, which establishes the criteria for the acceptance of waste at landfills.

In the event that Asbestos Containing Materials (ACMs) are found within the excavated material, the removal will only be carried out by a suitably permitted waste contractor, in accordance with *S.I. No. 386 of 2006 Safety, Health and Welfare at Work (Exposure to Asbestos) Regulations 2006-2010.* All asbestos will be taken to a suitably licensed or permitted facility.

In the event that hazardous soil, or historically deposited waste is encountered during the construction phase, the contractor will notify CCC and provide a Hazardous / Contaminated Soil Management Plan, to include estimated tonnages, description of location, any relevant mitigation, destination for disposal / treatment, in addition to information on the authorised waste collector(s).

3.3.2 Fuel/Oils

Fuels and oils are classed as hazardous materials; any on-site storage of fuel / oil, and all storage tanks and all draw-off points will be bunded and located in a dedicated, secure area of the site. Provided that these requirements are adhered to and the site crew are trained in the appropriate refuelling techniques, it is not expected that there will be any fuel / oil waste generated at the site.

3.3.3 Invasive Plant Species

Multiple site surveys were undertaken by Scott Cawley Ecology for the purpose of identifying and managing any Third Schedule of the European Communities (Birds and Natural Habitats) Regulations 2011 as amended invasive species such as Japanese Knotweed (*Fallopia japonica*) *if located onsite*. No invasive species as listed on the Third Schedule of the European Communities (Birds and Natural Habitats) were found.

3.3.4 Asbestos

Prior to the demolition of any of the existing structures onsite demolition and refurbishment asbestos surveys will be undertaken by a suitably qualified expert. All reports will be presented to CCC prior to any demolition works being undertaken.

Removal of asbestos or ACMs will be carried out by a suitably qualified contractor and ACMs will only be removed from site by a suitably permitted / licenced waste contractor, in accordance with S.I. No. 386 of 2006 Safety, Health and Welfare at Work (Exposure to Asbestos) Regulations 2006-2010. All material will be taken to a suitably licensed or permitted facility.

3.3.5 Other Known Hazardous Substances

Paints, glues, adhesives and other known hazardous substances will be stored in designated areas. They will generally be present in small volumes only and associated waste volumes generated will be kept to a minimum. Wastes will be stored in appropriate receptacles pending collection by an authorised waste contractor.

In addition, WEEE (containing hazardous components), printer toner / cartridges, batteries (Lead, Ni-Cd or Mercury) and / or fluorescent tubes and other mercury containing waste may be generated from during C&D activities or temporary site offices. These wastes, if generated, will be stored in appropriate receptacles in designated areas of the site pending collection by an authorised waste contractor.

3.4 Main Construction and Demolition Waste Categories

The main non-hazardous and hazardous waste streams that could be generated by the construction activities at a typical site are shown in Table 3.1. The List of Waste (LoW) code (applicable as of 1 June 2015) (also referred to as the European Waste Code (EWC)) for each waste stream is also shown.

Table 3.1	Typical waste types generated and LoW codes (individual waste types may contain
	hazardous substances)

Waste Material	LoW/EWC Code
Concrete, bricks, tiles, ceramics	17 01 01-03 & 07
Wood, glass and plastic	17 02 01-03
Treated wood, glass, plastic, containing hazardous substances	17-02-04*
Bituminous mixtures, coal tar and tarred products	17 03 01*, 02 & 03*
Metals (including their alloys) and cable	17 04 01-11
Soil and stones	17 05 03* & 04
Gypsum-based construction material	17 08 01* & 02
Paper and cardboard	20 01 01
Mixed C&D waste	17 09 04
Green waste	20 02 01
Electrical and electronic components	20 01 35 & 36
Batteries and accumulators	20 01 33 & 34
Liquid fuels	13 07 01-10
Chemicals (solvents, pesticides, paints, adhesives, detergents etc.)	20 01 13, 19, 27-30
Insulation materials	17 06 04
Organic (food) waste	20 01 08
Mixed Municipal Waste	20 03 01

* Individual waste type may contain hazardous substances

4.0 WASTE MANAGEMENT

4.1 Demolition Waste Generation

The demolition stage will involve the demolition of an existing residential building, multiple farm buildings and some hardstanding areas on- site. The demolition areas are identified in the planning drawings provided with this application. The anticipated demolition waste and rates of reuse, recycling / recovery and disposal are shown in Table 4.1, below.

Waste Type	Tonnes	Reuse		Recycle / Recovery		Disposal	
		%	Tonnes	%	Tonnes	%	Tonnes
Glass	32.6	0	0.0	85	27.7	15	4.9
Concrete, Bricks, Tiles, Ceramics	184.7	30	55.4	65	120.0	5	9.2
Plasterboard	14.5	30	4.3	60	8.7	10	1.4
Asphalts	3.6	0	0.0	25	0.9	75	2.7
Metals	79.7	5	4.0	80	63.7	15	11.9
Slate	3.6	0	0.0	85	3.1	15	0.5
Timber	43.5	10	4.3	60	26.1	30	13.0
Asbestos	0.1	0	0.0	0	0.0	100	0.1
Total	362.2		68.1		250.2		43.9

 Table 4.1
 Estimated off-site reuse, recycle and disposal rates for demolition waste

4.2 Construction Waste Generation

Table 4.2 shows the breakdown of C&D waste types produced on a typical site based on data from the EPA *National Waste Reports* ¹⁵ and the joint EPA & GMIT study ¹⁶.

Table 4.2:Waste materials generated on a typical Irish construction site

Waste Types	%
Mixed C&D	33
Timber	28
Plasterboard	10
Metals	8
Concrete	6
Other	15
Total	100

Table 4.3, below, shows the estimated construction waste generation for the proposed Project based on the gross floor area of construction and other information available to date, along with indicative targets for management of the waste streams. The estimated amounts for the main waste types (with the exception of soils and stones) are based on an average large-scale development waste generation rate per m², using the waste breakdown rates shown in Table 4.2. These have been calculated from the schedule of development areas provided by the architect.

Waste Type	Tonnes	Reuse		-	/cle / overy	Disposal	
		%	Tonnes	%	Tonnes	%	Tonnes
Mixed C&D	310.1	10	31.0	80	248.1	10	31.0
Timber	263.2	40	105.3	55	144.7	5	13.2
Plasterboard	94.0	30	28.2	60	56.4	10	9.4
Metals	75.2	5	3.8	90	67.7	5	3.8
Concrete	56.4	30	16.9	65	36.7	5	2.8
Other	141.0	20	28.2	60	84.6	20	28.2
Total	939.8		213.3		638.1		88.3

Table 4.3 : Predicted on and off-site reuse, recycle and disposal rates for construction w

In addition to the waste streams in Table 4.3, there will be c. 111,424 m³ topsoil, subsoil, stones, clay and rock excavated excavated to facilitate construction of new foundations, underground services, and the installation of the proposed basements. Any suitable excavated material will be temporarily stockpiled for reuse as fill, where possible it is expected that no material will be required to be removed offsite. If any material is found to be unsuitable for reuse it will be removed off- site for appropriate reuse, recovery and / or disposal.

It should be noted that until final materials and detailed construction methodologies have been confirmed, it is difficult to predict with a high level of accuracy the construction waste that will be generated from the proposed works as the exact materials and quantities may be subject to some degree of change and variation during the construction process.

4.3 **Proposed Waste Management Options**

Waste materials generated will be segregated on- site, where it is practical. Where the onsite segregation of certain wastes types is not practical, off- site segregation will be carried out. There will be skips and receptacles provided to facilitate segregation at source, where feasible. All waste receptacles leaving site will be covered or enclosed. The appointed waste contractor will collect and transfer the wastes as receptacles are filled. There are numerous waste contractors in the Clare region that provide this service.

All waste arisings will be handled by an approved waste contractor holding a current waste collection permit. All waste arisings requiring disposal off- site will be reused, recycled, recovered or disposed of at a facility holding the appropriate registration, permit or licence, as required.

During construction, some of the sub-contractors on site will generate waste in relatively low quantities. The transportation of non-hazardous waste by persons who are not directly involved with the waste business, at weights less than or equal to 2 tonnes, and in vehicles not designed for the carriage of waste, are exempt from the requirement to have a waste collection permit (per Article 30 (1) (b) of the Waste Collection Permit Regulations 2007, as amended). Any sub-contractors engaged that do not generate more than 2 tonnes of waste at any one time can transport this waste off- site in their work vehicles (which are not designed for the carriage of waste). However, they are required to ensure that the receiving facility has the appropriate COR / permit / licence.

Written records will be maintained by the contractor(s), detailing the waste arising throughout the C&D phases, the classification of each waste type, waste collection permits for all waste contactors who collect waste from the site and COR / permit / licence for the receiving waste facility for all waste removed off- site for appropriate reuse, recycling, recovery and / or disposal

Dedicated bunded storage containers will be provided for hazardous wastes which may arise, such as batteries, paints, oils, chemicals, if required.

The anticipated management of the main waste streams is outlined as follows:

Topsoil, Subsoil, Stones, Clay and Rock

The waste hierarchy states that the preferred option for waste management is prevention and minimisation of waste, followed by preparing for reuse and recycling / recovery, energy recovery (i.e. incineration) and, least favoured of all, disposal. The excavations are required to facilitate construction works so the preferred option (prevention and minimisation) cannot be accommodated for the excavation phase.

If material is removed off- site it could be reused as a by-product (and not as a waste). If this is done, it will be done in accordance with Article 27 of the *European Communities (Waste Directive) Regulations 2011*, which requires that certain conditions are met and that by-product notifications are made to the EPA via their online notification form. Excavated material should not be removed from site until approval from the EPA has been received.

The next option (beneficial reuse) may be appropriate for the excavated material, pending environmental testing to classify the material as hazardous or non-hazardous in accordance with the EPA *Waste Classification – List of Waste & Determining if Waste is Hazardous or Non-Hazardous* publication. Clean inert material may be used as fill material in other construction projects or engineering fill for waste licensed sites. Beneficial reuse of surplus excavation material as engineering fill may be subject to further testing to determine if materials meet the specific engineering standards for their proposed end use.

If the material is deemed to be a waste, then removal and reuse / recovery / disposal of the material will be carried out in accordance with the *Waste Management Acts* 1996 – 2011 as amended, the *Waste Management (Collection Permit) Regulations* 2007 as amended and the *Waste Management (Facility Permit & Registration) Regulations* 2007 as amended. Once all available beneficial reuse options have been exhausted, the options of recycling and recovery at waste permitted and licensed sites will be considered.

In the event that contaminated material is encountered and subsequently classified as hazardous, this material will be stored separately to any non-hazardous material. It will require off-site treatment at a suitable facility or disposal abroad via Transfrontier Shipment of Wastes (TFS).

<u>Bedrock</u>

If bedrock is encountered, it is anticipated that it will not be crushed on site. Any excavated rock is expected to be removed off- site for appropriate reuse, recovery and / or disposal. If bedrock is to be crushed on- site, the appropriate mobile waste facility permit will be obtained from CCC.

Silt & Sludge

During the construction phase, silt and petrochemical interception will be carried out on run-off and pumped water from site works, where required. Sludge and silt will then be collected by a suitably licensed contractor and removed off- site.

Concrete Blocks, Bricks, Tiles & Ceramics

The majority of concrete blocks, bricks, tiles and ceramics generated as part of the construction works are expected to be clean, inert material and should be recycled, where possible. If concrete is to be crushed on- site, the appropriate waste facility permit will be obtained from CCC.

Hard Plastic

As hard plastic is a highly recyclable material, much of the plastic generated will be primarily from material off-cuts. All recyclable plastic will be segregated and recycled, where possible.

<u>Timber</u>

Timber that is uncontaminated, i.e. free from paints, preservatives, glues, etc., will be disposed of in a separate skip and recycled off- site.

Metal

Metals will be segregated, where practical, and stored in skips. Metal is highly recyclable and there are numerous companies that will accept these materials.

Plasterboard

There are currently a number of recycling services for plasterboard in Ireland. Plasterboard from the construction phases will be stored in a separate skip, pending collection for recycling. The site Manager will ensure that oversupply of new plasterboard is carefully monitored to minimise waste.

<u>Glass</u>

Glass materials will be segregated for recycling, where possible.

Waste Electrical & Electronic Equipment (WEEE)

Any WEEE will be stored in dedicated covered cages / receptacles / pallets pending collection for recycling.

Other Recyclables

Where any other recyclable wastes, such as cardboard and soft plastic, are generated, these will be segregated at source into dedicated skips and removed off- site.

Non-Recyclable Waste

C&D waste which is not suitable for reuse or recovery, such as polystyrene, some plastics and some cardboards, will be placed in separate skips or other receptacles. Prior to removal from site, the non-recyclable waste skip / receptacle will be examined by a member of the waste team (see Section 7.0) to determine if recyclable materials have

been placed in there by mistake. If this is the case, efforts will be made to determine the cause of the waste not being segregated correctly and recyclable waste will be removed and placed into the appropriate receptacle.

Asbestos Containing Materials

Any asbestos or ACM found on- site will be removed by a suitably competent contractor and disposed of as asbestos waste before the demolition works begin. All asbestos removal work or encapsulation work must be carried out in accordance with *S.I. No. 386 of 2006 Safety, Health and Welfare at Work (Exposure to Asbestos) Regulations 2006-2010.*

Other Hazardous Wastes

On-site storage of any hazardous wastes produced (i.e. contaminated soil if encountered and / or waste fuels) will be kept to a minimum, with removal off-site organised on a regular basis. Storage of all hazardous wastes on-site will be undertaken so as to minimise exposure to on-site personnel and the public and to also minimise potential for environmental impacts. Hazardous wastes will be recovered, wherever possible, and failing this, disposed of appropriately.

On-Site Crushing

It is currently not envisaged that the crushing of waste materials will occur on- site. However, if the crushing of material is to be undertaken, a waste facility permit will first be obtained from CCC and the destination of the accepting waste facility will be supplied to the CCC waste unit.

4.4 Tracking and Documentation Procedures for Off-Site Waste

All waste will be documented prior to leaving the site. Waste will be weighed by the contractor, either by a weighing mechanism on the truck or at the receiving facility. These waste records will be maintained on site by the nominated project Waste Manager (see Section 7.0).

All movement of waste and the use of waste contractors will be undertaken in accordance with the *Waste Management Acts 1996 - 2011*, *Waste Management (Collection Permit) Regulations 2007* as amended and *Waste Management (Facility Permit & Registration) Regulations 2007* and amended. This includes the requirement for all waste contractors to have a waste collection permit issued by the NWCPO. The nominated project Waste Manager (see Section 7.0) will maintain a copy of all waste collection permits on-Site.

If the waste is being transported to another site, a copy of the Local Authority waste COR / permit or EPA Waste / Industrial Emissions Licence for that site will be provided to the nominated project Waste Manager (see Section 7.0). If the waste is being shipped abroad, a copy of the Transfrontier Shipping (TFS) notification document will be obtained from DCC (as the relevant authority on behalf of all Local Authorities in Ireland) and kept on-Site along with details of the final destination (COR, permits, licences, etc.). A receipt from the final destination of the material will be kept as part of the on-Site waste management records.

All information will be entered in a waste management recording system to be maintained on-Site.

5.0 ESTIMATED COST OF WASTE MANAGEMENT

An outline of the costs associated with different aspects of waste management is outlined below. The total cost of C&D waste management will be measured and will take into account handling costs, storage costs, transportation costs, revenue from rebates and disposal costs.

5.1 Reuse

By reusing materials on site, there will be a reduction in the transport and recycle / recovery / disposal costs associated with the requirement for a waste contractor to take the material off-Site. Clean and inert soils, gravel, stones, etc., which cannot be reused on-Site may be used as access roads or capping material for landfill sites, etc. This material is often taken free of charge or at a reduced fee for such purposes, reducing final waste disposal costs.

5.2 Recycling

Salvageable metals will earn a rebate, which can be offset against the costs of collection and transportation of the skips. Clean, uncontaminated cardboard and certain hard plastics can also be recycled. Waste contractors will charge considerably less to take segregated wastes, such as recyclable waste, from a site than mixed waste. Timber can be recycled as chipboard. Again, waste contractors will charge considerably less to take segregated wastes, such as timber, from a site than mixed waste.

5.3 Disposal

Landfill charges are currently at around €130 - €150 per tonne which includes a €75 per tonne landfill levy specified in the *Waste Management (Landfill Levy) Regulations 2015.* In addition to disposal costs, waste contractors will also charge a collection fee for skips.

Collection of segregated C&D waste usually costs less than municipal waste. Specific C&D waste contractors take the waste off-site to a licensed or permitted facility and, where possible, remove salvageable items from the waste stream before disposing of the remainder to landfill. Clean soil, rubble, etc., is also used as fill / capping material, wherever possible.

6.0 DEMOLITION PROCEDURES

There will be waste materials generated from the demolition of the existing residential building, multiple farm buildings and some hardstanding areas on site. The demolition areas are identified in the planning drawings and demolition report submitted as part of this application. A formal demolition plan including safety procedures will be prepared by the demolition contractor. However, in general, the following sequence of works should be followed during the demolition stage:

Check for Hazards

Prior to commencing works, buildings and structures to be demolished will be checked for any likely hazards including asbestos, ACMs, electrical power lines or cables, gas reticulation systems, telecommunications, unsafe structures and fire / explosion hazards, e.g. combustible dust, chemical hazards, oil, fuels and contamination.

Removal of Components

All hazardous materials will be removed first. All components from within the buildings that can be salvaged will be removed next. This will primarily be comprised of metal; however, may also include timbers, doors, windows, wiring and metal ducting, etc.

Removal of Roofing

Steel roof supports, beams, etc., will be dismantled and taken away for recycling / salvage.

Excavation of Services, Demolition of Walls and Concrete

Services will be removed from the ground and the breakdown of walls will be carried out once all salvageable or reusable materials have been taken from the buildings. Finally, any existing foundations and hard standing areas will be excavated.

7.0 TRAINING PROVISIONS

A member of the construction team will be appointed as the Waste Manager to ensure commitment, operational efficiency and accountability in relation to waste management during the C&D phases of the development.

7.1 Waste Manager Training and Responsibilities

The nominated Waste Manager will be given responsibility and authority to select a waste team if required, i.e. members of the site crew that will aid them in the organisation, operation and recording of the waste management system implemented on site.

The Waste Manager will have overall responsibility to oversee, record and provide feedback to the client on everyday waste management at the site. Authority will be given to the Waste Manager to delegate responsibility to sub-contractors, where necessary, and to coordinate with suppliers, service providers and sub-contractors to prioritise waste prevention and material salvage.

The Waste Manager will be trained in how to set up and maintain a record keeping system, how to perform an audit and how to establish targets for waste management on site. The Waste Manager will also be trained in the best methods for segregation and storage of recyclable materials, have information on the materials that can be reused on site and be knowledgeable in how to implement this C&D WMP.

7.2 Site Crew Training

Training of site crew in relation to waste is the responsibility of the Waste Manager and, as such, a waste training program will be organised. A basic awareness course will be held for all site crew to outline the C&D WMP and to detail the segregation of waste materials at source. This may be incorporated with other site training needs such as general site induction, health and safety awareness and manual handling.

This basic course will describe the materials to be segregated, the storage methods and the location of the Waste Storage Areas (WSAs). A sub-section on hazardous wastes will be incorporated into the training program and the particular dangers of each hazardous waste will be explained.

8.0 RECORD KEEPING

Records will be kept for all waste material which leaves the site, either for reuse on another site, recycling or disposal. A recording system will be put in place to record the waste arisingon Site.

A waste tracking log will be used to track each waste movement from the site. On exit from the site, the waste collection vehicle driver will stop at the site office and sign out as a visitor and provide the security personnel or Waste Manager with a waste docket (or Waste Transfer Form (WTF) for hazardous waste) for the waste load collected. At this time, the security personnel will complete and sign the Waste Tracking Register with the following information:

- Date
- Time
- Waste Contractor
- Company waste contractor appointed by, e.g. Contractor or subcontractor name
- Collection Permit No.
- Vehicle Reg.
- Driver Name
- Docket No.
- Waste Type
- EWC / LoW

The waste vehicle will be checked by security personal or the Waste Manager to ensure it has the waste collection permit no. displayed and a copy of the waste collection permit in the vehicle before they are allowed to remove the waste from the site.

The waste transfer dockets will be transferred to the Waste Manager on a weekly basis and can be placed in the Waste Tracking Log file. This information will be forwarded onto the CCC Waste Regulation Unit when requested.

Alternatively, each subcontractor that has engaged their own waste contractor will be required to maintain a similar waste tracking log with the waste dockets / WTF maintained on file and available for inspection on site by the main contractor as required.

Waste receipts from the receiving waste facility will also be obtained by the site contractor(s) and retained. A copy of the Waste Collection Permits, CORs, Waste Facility Permits and Waste Licences will be maintained on site at all times. Subcontractors who have engaged their own waste contractors, will provide the main contractor with a copy of the waste collection permits and COR / permit / licence for the receiving waste facilities and maintain a copy on file, available for inspection on site as required.

9.0 OUTLINE WASTE AUDIT PROCEDURE

9.1 Responsibility for Waste Audit

The appointed Waste Manager will be responsible for conducting a waste audit at the site during the C&D phase of the proposed Project. Contact details for the nominated Waste Manager will be provided to the CCC Waste Regulation Unit after the main contractor is appointed and prior to any material being removed from site.

9.2 Review of Records and Identification of Corrective Actions

A review of all waste management costs and the records for the waste generated and transported off-site should be undertaken mid-way through the demolition and construction phase of the proposed Project.

If waste movements are not accounted for, the reasons for this should be established in order to see if and why the record keeping system has not been maintained. The waste records will be compared with the established recovery / reuse / recycling targets for the site. Each material type will be examined, in order to see where the largest percentage waste generation is occurring. The waste management methods for each material type will be reviewed in order to highlight how the targets can be achieved.

Upon completion of the C&D phase, a final report will be prepared, summarising the outcomes of waste management processes adopted and the total recycling / reuse / recovery figures for the development.

10.0 CONSULTATION WITH RELEVANT BODIES

10.1 Local Authority

Once construction contractors have been appointed and have appointed waste contractors, and prior to removal of any C&D waste materials off-site, details of the proposed destination of each waste stream will be provided to the CCC Waste Regulation Unit.

CCC will also be consulted, as required, throughout the demolition, excavation and construction phases in order to ensure that all available waste reduction, reuse and recycling opportunities are identified and utilised and that compliant waste management practices are carried out.

10.2 Recycling / Salvage Companies

The appointed waste contractor for the main waste streams managed by the demolition and construction contractors will be audited in order to ensure that relevant and up-to-date waste collection permits and facility registrations / permits / licences are held. In addition, information will be obtained regarding the feasibility of recycling each material, the costs of recycling / reclamation, the means by which the wastes will be collected and transported off- site, and the recycling / reclamation process each material will undergo off- site.

10.2.1 Current C&D Waste Disposal / Recovery Routes

During the planning phase and prior to the appointment of waste contractors, waste destinations for C&D Waste cannot be supplied. These details are to be finally determined prior to demolition and construction beginning. Waste facilities have capacity and life span limitations that may not be available at the of construction & demolition phases of the development.

As well as EPA licensed facilities, there are currently a number of facilities in Clare and the counties surrounding the proposed Project in possession of a Waste Facility Permit or Certificate of Registration from the applicable County Councils which accept soils and inert waste from construction and demolition works. These facilities are all permitted or certified to operate Class 5, Class 6, and/or Class 7 waste activities as described in the Third Schedule of the Waste Management (Facility Permit and Registration) Regulations 2007 (S.I. No. 821/2007).

The currently licensed or permitted facilities which can operate under these classes of activity and are closest to the proposed development are listed in Table 14.1. There are also registered sites that can receive waste from the development that are not included in the table due to their lower capacity limits, however they can still potentially be used by the yet to be selected waste contractor. All details were collected from the National Waste Collection Permit Office and Environmental Protection Agency websites (July 2021) and a full list of licensed, permitted and register sites can be found on the registers contained on these sites.

Facility / Applicant Name	Licence Number & Facility Type	Location					
Potential Soil Recovery Facilities							
Tulligmore Quarry Solutions Limited	W0255-02	Tulligmore Quarry Solutions Limited, Tulligmore, Dripsey, Cork.					
Lennon Quarries Limited	W0272-02	Lennon Quarries Limited, Tallagh, Belmullet, Mayo.					
Mallow Contracts Limited	W0266-01	Mallow Contracts Limited, Lissard & Ballyhilloge, Mourneabbey, Co. Cork, Cork.					
Potential Permitted Waste Facilities for Soil							
Cloonaughter Parteen Co Clare	WFP-CE-17-0001-01	Cloonaughter Parteen Co Clare					
Clare Waste & Recycling Co. Ltd	WFP-CE-08-0002-03	Raheen Tuamgraney Co. Clare V94 WY67					
Jim Bolton Sand and Gravel Ltd	WFP-CE-19-0001-01	Faheymore O'Briens Bridge Co Clare V94 F635					
Kieran Kelly Haulage Ltd	WFP-CE-19-0002-01	Ballynacragga Newmarket-on-Fergus Co Clare					
Lymar Contracts Ltd.	WFP-CE-20-0002-01	Caherea Lissycasey Ennis Co Clare					
Potential Permitted Waste	Facilities for Demolition and C	onstruction Waste					
Clare Waste & Recycling Co. Ltd	WFP-CE-08-0002-03	Raheen Tuamgraney Co. Clare V94 WY67					
Clean (Irl) Refuse & Recycling Company	WFP-CE-08-0003-03	Smithstown Industrial Estate Shannon Co Clare V14 HP89					
Potential Waste Facilities	Hazardous Waste						

 Table 10.1:
 Potential destinations for Construction & Demolition Waste

Facility / Applicant Name	Licence Number & Facility Type	Location
Enva Ireland Limited	W0145-02	Enva Ireland Limited (Cork), Unit 9, Raffeen Industrial Estate, Raffeen, Monkstown, Cork.

11.0 REFERENCES

- 1. Waste Management Act 1996 (No. 10 of 1996) as amended. Sub-ordinate
- 2. Protection of the Environment Act 2003, (No. 27 of 2003) as amended.
- 3. Litter Pollution Act 1997 (S.I. No. 12 of 1997) as amended
- 4. Southern Region Waste Management Plan 2015 2021 (2015).
- 5. Department of Environment and Local Government (DoELG) Waste Management Changing Our Ways, A Policy Statement (1998).
- 6. Forum for the Construction Industry *Recycling of Construction and Demolition Waste.*
- 7. Department of Communications, Climate Action and Environment (DCCAE), *Waste Action Plan for the Circular Economy - Ireland's National Waste Policy 2020-2025* (Sept 2020).
- 8. Department of Environment, Heritage and Local Government, *Best Practice Guidelines* on the Preparation of Waste Management Plans for Construction and Demolition Projects (2006).
- 9. FÁS and the Construction Industry Federation (CIF), *Construction and Demolition Waste* Management – a handbook for Contractors and site Managers (2002).
- 10. Environmental Protection Agency (EPA) 'Best Practice Guidelines for the Preparation of Resource Management Plans for Construction & Demolition Projects' Draft (April 2021).
- 11. Clare County Council (CCC), Clare County Development Plan 2017-2023 (As Caried) (2017)
- 12. Planning and Development Act 2000 (No. 30 of 2000) as amended
- 13. EPA, Waste Classification List of Waste & Determining if Waste is Hazardous or Non-Hazardous (2015)
- 14. Council Decision 2003/33/EC, establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC.
- 15. Environmental Protection Agency (EPA), *National Waste Database Reports 1998 2012*.
- 16. EPA and Galway-Mayo Institute of Technology (GMIT), EPA Research Report 146 A Review of Design and Construction Waste Management Practices in Selected Case Studies Lessons Learned (2015).